Recently, solving the complex design optimization problems with design uncertainties has become an important but very challenging task in the communities of reliability-based design optimization (RBDO) and multidisciplinary design optimization (MDO). The MDO algorithms decompose the complex design problem into the hierarchical or nonhierarchical optimization structure and distribute the workloads to each discipline (or subproblem) in the decomposed structure. The coordination of the local responses is crucial for the success of finding the optimal design point. The problem complexity increases dramatically when the existence of the design uncertainties is not negligible. The RBDO algorithms perform the reliability analyses to evaluate the probabilities that the random variables violate the constraints. However, the required reliability analyses build up the degree of complexity. In this paper, the gradient-based transformation method (GTM) is utilized to reduce the complexity of the MDO problems by transforming the design space to multiple single-variate monotonic coordinates along the directions of the constraint gradients. The subsystem responses are found using the monotonicity principles (MP) and then coordinated for the new design points based on two general principles. To consider the design uncertainties, the probabilistic gradient-based transformation method (PGTM) is proposed to adapt the first-order probabilistic constraints from three different RBDO algorithms, including the chance constrained programming (CCP), reliability index approach (RIA), and performance measure approach (PMA), to the framework of the GTM. PGTM is efficient because only the sensitivity analyses and the reliability analyses require function evaluations (FE). The optimization processes of monotonicity analyses and the coordination procedures are free of function evaluations. Several mathematical and engineering examples show the PGTM is capable of finding the optimal solutions with desirable reliability levels.

References

References
1.
Cornell
,
C. A.
,
1969
, “
A Probability-Based Structural Code
,”
J. Am. Concr. Inst.
,
66
(
12
), pp.
974
985
.
2.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
J. Engrg. Mech. Div.
,
100
(
EM1
), pp.
111
121
.
3.
Rackwitz
,
R.
, and
Fiessler
,
B.
,
1978
, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
,
9
, pp.
489
494
.10.1016/0045-7949(78)90046-9
4.
Kuschel
,
N.
, and
Rackwitz
,
R.
,
1997
, “
Two Basic Problems in Reliability-Based Structural Optimization
,”
Math. Methods Oper. Res.
,
46
, pp.
309
333
.10.1007/BF01194859
5.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability Based Design Optimization
,”
J. Mech. Des.
,
121
, pp.
557
564
.10.1115/1.2829499
6.
Rackwitz
,
R.
,
2001
, “
Reliability Analysis—A Review and Some Perspectives
,”
Struct. Saf.
,
23
(
4
), pp.
365
395
.10.1016/S0167-4730(02)00009-7
7.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
J. Mech. Des.
,
126
, pp.
225
233
.10.1115/1.1649968
8.
Qu
,
X.
, and
Haftka
,
R. T.
,
2004
, “
Reliability-Based Design Optimization Using Probabilistic Sufficiency Factor
,”
Struct. Multidiscip. Optim.
,
27
, pp.
314
325
.10.1007/s00158-004-0390-3
9.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2011
, “
A Modified Reliability Index Approach for Reliability-Based Design Optimization
,”
J. Mech. Des.
,
133
(
4
),
044501
.10.1115/1.4004442
10.
Sobieszczanski-Sobieski
,
J.
,
1982
, “
A Linear Decomposition Method for Large Optimization Problems—Blueprint for Development
,” Technical Report No. NASA-TM-83248.
11.
Braun
,
R. D.
, and
Kroo
,
I. M.
,
1995
, “
Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment
,” ICASE/NASA Langley Workshop on Multidisciplinary Design Optimization, Hampton, Virginia.
12.
Michelena
,
N.
,
Kim
,
H. M.
, and
Papalambros
,
P.
,
1999
, “
A System Partitioning and Optimization Approach to Target Cascading
,”
International Conference on Engineering Design
,
ICED, Munich, Germany
.
13.
Sobieszczanski-Sobieski
,
J.
,
1999
, “
Multidisciplinary Design Optimisation (MDO) Methods: Their Synergy With Computer Technology in the Design Process
,”
Aeronaut. J.
,
103
(
1026
), pp.
373
382
.
14.
Kim
,
H. M.
,
Michelena
,
N.
,
Papalambros
,
P.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
, pp.
474
480
.10.1115/1.1582501
15.
Zhang
,
X.-L.
,
Lin
,
P. T.
,
Gea
,
H. C.
, and
Huang
,
H.-Z.
,
2011
, “
Bounded Target Cascading in Hierarchical Design Optimization
,”
ASME 2011 International Deisgn Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC, USA
, Paper No. 48614.
16.
Lin
,
P. T.
, and
Gea
,
H. C.
,
2011
, “
A Gradient-Based Transformation Method in Multidisciplinary Design Optimization
,”
9th World Congress on Structural and Multidisciplinary Optimization, WCSMO9
,
Shizuoka, Japan
.
17.
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
,
1995
, “
Optimal Model-Based Decomposition of Powertrain System Design
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
499
505
.10.1115/1.2826710
18.
Braun
,
R. D.
,
Moore
,
A. A.
, and
Kroo
,
I. M.
,
1996
, “
Use of the Collaborative Optimization Architecture for Launch Vehicle Design
,” Technical Report No. NASA-AIAA-96-4018.
19.
Budianto
,
I. A.
, and
Olds
,
J. R.
,
2000
, “
A Collaborative Optimization Approach to Design and Deployment of a Space Based Infrared System Constellation
,”
2000 IEEE Aerospace Conference
,
Big Sky, Montana
.
20.
Kroo
,
I. M.
,
2004
, “
Distributed Multidisciplinary Design and Collaborative Optimization
,”
VKI Lecture Series on Optimization Methods and Tools for Multicriteria/Multidisciplinary Design
.
21.
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Louca
,
L. S.
,
Delagrammatikas
,
G. J.
,
Michelena
,
N. F.
,
Filipi
,
Z. S.
,
Papalambros
,
P. Y.
,
Stein
,
J. L.
, and
Assanis
,
D. N.
,
2002
, “
Target Cascading in Vehicle Redesign: A Class VI Truck Study
,”
Int. J. Veh. Des.
,
29
(
3
), pp.
199
225
.10.1504/IJVD.2002.002010
22.
Tosserams
,
S.
,
Kokkolaras
,
M.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2010
, “
A Nonhierarchical Formulation of Analytical Target Cascading
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051002
.10.1115/1.4001346
23.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
, pp.
221
232
.10.1115/1.1561042
24.
Lin
,
P. T.
, and
Gea
,
H. C.
,
2012
, “
A Gradient-Based Transformation Method in Multidisciplinary Design Optimization
,”
Struct. Multidiscip. Optim.
(in press).10.1007/s00158-012-0852-y
25.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
,
2000
,
Principles of Optimal Design
,
Cambridge University Press
,
New York
.
26.
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
,
1997
, “
A Hypergraph Framework for Optimal Model-Based Decomposition of Design Problems
,”
Comput. Optim. Appl.
,
8
(
2
), pp.
173
196
.10.1023/A:1008673321406
27.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
,
2003
, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
,
41
(
5
), pp.
897
905
.10.2514/2.2025
28.
Allison
,
J.
,
2004
, “
Complex System Optimization: A Review of Analytical Target Cascading, Collaborative Optimization, and Other Formulations
,” Master's thesis, University of Michigan, Ann Arbor, MI.
29.
Allison
,
J.
,
Kokkolaras
,
M.
,
Zawislak
,
M.
, and
Papalambros
,
P. Y.
,
2005
, “
On the Use of Analytical Target Cascading and Collaborative Optimization for Complex System Design
,”
6th World Congress on Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil.
30.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
,
2005
, “
Weights, Norms, and Notation in Analytical Target Cascading
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
499
501
.10.1115/1.1862674
31.
Michelena
,
N.
,
Papalambros
,
P.
,
Park
,
H. A.
, and
Kulkarni
,
D.
,
1999
, “
Hierarchical Overlapping Coordination for Large-Scale Optimization by Decomposition
,”
AIAA J.
,
37
(
7
), pp.
890
896
.10.2514/2.7538
32.
Dill
,
E. H.
,
2006
,
Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity
,
CRC Press
,
Boca Raton
.
33.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
403
411
.10.1115/1.1701880
34.
Noh
,
Y.
,
Choi
,
K. K.
, and
Du
,
L.
,
2009
, “
Reliability-Based Design Optimization of Problems With Correlated Input Variables Using a Gaussian Copula
,”
Struct. Multidiscip. Optim.
,
38
, pp.
1
16
.10.1007/s00158-008-0277-9
35.
Noh
,
Y.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2010
, “
Identification of Marginal and Joint CDFs Using Bayesian Method for RBDO
,”
Struct. Multidiscip. Optim.
,
40
, pp.
35
51
.10.1007/s00158-009-0385-1
36.
Rubinstein
,
R. Y.
,
1981
,
Simulation and The Monte Carlo Method
,
Wiley
,
New York, NY
.
37.
Charnes
,
A.
, and
Cooper
,
W. W.
,
1959
, “
Chance Constrained Programming
,”
Manage. Sci.
,
6
, pp.
73
79
.10.1287/mnsc.6.1.73
38.
Davidson
,
J. W.
,
Felton
,
L. P.
, and
Hart
,
G. C.
,
1977
, “
Optimum Design of Structures with Random Parameters
,”
Comput. Struct.
,
7
, pp.
481
486
.10.1016/0045-7949(77)90086-4
39.
Rao
,
S. S.
,
1980
, “
Structural Optimization by Chance Constrained Programming Techniques
,”
Comput. Struct.
,
12
, pp.
777
781
.10.1016/0045-7949(80)90014-0
40.
Jozwiak
,
S. F.
,
1986
, “
Minimum Weight Design of Structures With Random Parameters
,”
Comput. Struct.
,
23
, pp.
481
485
.10.1016/0045-7949(86)90091-X
41.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
1986
,
Methods of Structural Safety
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
42.
Der Kiureghian
,
A.
,
2004
,
Engineering Design Reliability Handbook
,
CRC Press
, Boca Raton, FL.
43.
Nikolaidis
,
E.
, and
Burdisso
,
R.
,
1988
, “
Reliability Based Optimization: A Safety Index Approach
,”
Comput. Struct.
,
28
(
6
), pp.
781
788
.10.1016/0045-7949(88)90418-X
44.
Frangopol
,
D. M.
, and
Corotis
,
R. B.
,
1996
,
Analysis and Computation: Proceedings of the 12th Conference Held in Conjunction With Structures Congress XIV
, pp.
67
78
.
45.
Wu
,
Y. T.
, and
Wang
,
W.
,
1996
, “
Probabilistic Mechanics & Structural Reliability
,”
Proceedings of the 7th Special Conference
, pp.
274
277
.
46.
Carter
,
A. D. S.
,
1997
,
Mechanical Reliability and Design
,
Wiley
,
New York
.
47.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
Selecting Probabilistic Approaches for Reliability-Based Design Optimization
,”
AIAA J.
,
42
(
1
), pp.
124
131
.10.2514/1.9036
48.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
A New Response Surface Methodology for Reliability-Based Design Optimization
,”
Comput. Struct.
,
82
, pp.
241
256
.10.1016/j.compstruc.2003.09.002
49.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R. J.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
(
3-4
), pp.
272
283
.10.1007/s00158-003-0345-0
50.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Adaptive Probability Analysis Using an Enhanced Hybrid Mean Value Method
,”
Struct. Multidiscip. Optim.
,
29
(
2
), pp.
134
148
.10.1007/s00158-004-0452-6
51.
Yang
,
R. J.
, and
Gu
,
L.
,
2004
, “
Experience With Approximate Reliability-Based Optimization Methods
,”
Struct. Multidiscip. Optim.
,
26
(
2
), pp.
152
159
.10.1007/s00158-003-0319-2
52.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2009
, “
A Modified Reliability Index Approach for Reliability-Based Design Optimization
,”
2009 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
San Diego, CA
, Paper No. DETC2009-87804.
53.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Inverse Analysis Method Using Mpp-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
14
27
.10.1016/j.cma.2008.03.004
54.
Lin
,
P. T.
,
2010
, “
Parametric Modeling and Optimization of Thermal Systems With Design Uncertainties
,” Ph.D. thesis, Rutgers University, New Brunswick, New Jersey.
55.
Lin
,
P. T.
,
Jaluria
,
Y.
, and
Gea
,
H. C.
,
2009
, “
Parametric Modeling and Optimization of Chemical Vapor Deposition Process
,”
J. Manuf. Sci. Eng.
,
131
(
1
), Paper No. 011011.
56.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
,
2006
, “
BB-ATC: Analytical Target Cascading Using Branch and Bound for Mixed-Integer Nonlinear Programming
,”
Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, Pennsylvania
, Paper No. DETC2006/DAC-99040.
57.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
,
2006
, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
.10.1007/s00158-005-0579-0
58.
Han
,
J.
, and
Papalambros
,
P. Y.
,
2010
, “
A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading
,”
J. Mech. Des.
,
132
(
2
),
021003
.10.1115/1.4000758
59.
Han
,
J.
, and
Papalambros
,
P. Y.
,
2010
, “
An SLP Filter Algorithm for Probabilistic Analytical Target Cascading
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
935
945
.10.1007/s00158-009-0450-9
60.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
,
2005
, “
An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
206
214
.10.1115/1.1830046
You do not currently have access to this content.