In this study, we present an analytical approach for synthesizing line actuation spaces of a parallel flexure mechanism (PFM) that can help designers to arrange linear actuators within the PFM in a correct and optimal way. On the basis of screw theory and upon an assumption of small deformations, an important synthesis criterion stated as “any actuation space of a flexure mechanism is always linearly independent of its constraint space” has been derived and disclosed for the first time. Guided by this criterion, a general synthesis process for the line actuation spaces of PFMs is introduced and demonstrated with several selective examples. The proposed synthesis criterion and process will enable designers to (i) systematically formulate line actuation spaces in the format of screw systems; (ii) likely yield a multiple solution to actuation spaces; and (iii) potentially determine an optimal result from those alternatives for actuator placement.

References

References
1.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
New York
.
2.
Zhang
,
W. J.
,
Zou
,
J.
,
Watson
,
L. G.
,
Zhao
,
W.
,
2002
, “
The Constant-Jacobian Method for Kinematics of a Three-DOF Planar Micro-Motion Stage
,”
J. Rob. Syst.
,
19
(
2
), pp.
63
72
.10.1002/rob.1070
3.
Pernette
,
E.
,
Henein
,
S.
,
Magnani
,
I.
, and
Clavel
,
R.
,
1997
, “
Design of Parallel Robots in Microrobots
,”
Robotica
,
15
(
4
), pp.
417
420
.10.1017/S0263574797000519
4.
Choi
,
K. B.
, and
Lee
,
J. J.
,
2005
, “
Passive Compliant Wafer Stage for Single-Step Nano-Imprint Lithography
,”
Rev. Sci. Instrum.
,
76
(
7
), p.
075106
.10.1063/1.1948401
5.
Canfield
,
S. L.
,
Beard
,
J.
,
Lobontiu
,
N.
,
O’Malley
,
E. J.
,
Samuelson
,
M.
, and
Paine
,
J. S.
,
2002
, “
Development of a Spatial Compliant Manipulator
,”
Inter. J. Rob. Auto.
,
17
(
1
), pp.
63
71
.
6.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
,
2007
, “
Design, Analysis, Fabrication and Testing of a Parallel-Kinematic Micropositioning XY Stage
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
946
961
.10.1016/j.ijmachtools.2006.07.007
7.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
8.
Kim
,
C. J.
,
2005
, “
A Conceptual Approach to the Computational Synthesis of Compliant Mechanisms
,” Ph.D. thesis, University of Michigan, Ann Arbor.
9.
Hale
,
L. C.
,
1999
, “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.
10.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Constant-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
816
830
.10.1115/1.2735342
11.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT). Part I: Principles
,”
Prec. Eng.
,
34
(
2
), pp.
259
270
.10.1016/j.precisioneng.2009.06.008
12.
Yu
,
J. J.
,
Li
,
S. Z.
,
Su
,
H.-J.
, and
Culpepper
,
M. L.
,
2011
, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031008
.10.1115/1.4004123
13.
Su
,
H.-J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), pp.
041009
.10.1115/1.3211024
14.
Kong
,
X. W.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer-Verlag
,
Berlin Heidelberg
.
15.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
A Screw Theory Basis for Quantitative and Graphical Design Tools that Define Layout of Actuators to Minimize Parasitic Errors in Parallel Flexure Systems
,”
Prec. Eng.
,
34
(
4
), pp.
767
776
.10.1016/j.precisioneng.2010.05.004
16.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University
,
Cambridge
.
17.
Su
,
H.-J.
, and
Tari
,
H.
,
2011
, “
On Line Screw Systems and Their Application to Flexure Synthesis
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011009
.10.1115/1.4003078
18.
Su
,
H.-J.
, and
Tari
,
H.
,
2010
, “
Realizing Orthogonal Motions With Wire flexures Connected in Parallel
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121002
.10.1115/1.4002837
19.
Ding
,
X. L.
, and
Dai
,
J. S.
,
2010
, “
Compliance Analysis of Mechanisms With Spatial Continuous Compliance in the Context of Screw Theory and Lie Group
,”
J. Mech. Eng. Sci., Proc. IMechE, Part C
,
224
(
11
), pp.
2493
2504
.10.1243/09544062JMES2095
You do not currently have access to this content.