Inverse simulation is an inverse process of direct simulation. It determines unknown input variables of the direct simulation for a given set of simulation output variables. Uncertainties usually exist, making it difficult to solve inverse simulation problems. The objective of this research is to account for uncertainties in inverse simulation in order to produce high confidence in simulation results. The major approach is the use of the maximum probability density function (PDF), which determines not only unknown deterministic input variables but also the realizations of random input variables. Both types of variables are solved on the condition that the joint probability density of all the random variables is maximum. The proposed methodology is applied to a traffic accident reconstruction problem where the simulation output (accident consequences) is known and the simulation input (velocities of the vehicle at the beginning of crash) is sought.

References

References
1.
Pontonnier
,
C.
, and
Dumont
,
G.
,
2009
, “
Inverse Dynamics Method Using Optimization Techniques for the Estimation of Muscles Forces Involved in the Elbow Motion
,”
Int. J. Interact. Des. Manuf.
,
3
(
4
), pp.
227
236
.10.1007/s12008-009-0078-4
2.
Tsai
,
M. S.
, and
Yuan
,
W. H.
,
2010
, “
Inverse Dynamics Analysis for a 3-Prs Parallel Mechanism Based on a Special Decomposition of the Reaction Forces
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1491
1508
.10.1016/j.mechmachtheory.2010.07.003
3.
Paul
,
R. P.
,
1981
,
Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators
,
The MIT Press
, Artificial Intelligence Series, Cambridge, MA.
4.
Happee
,
R.
,
1994
, “
Inverse Dynamic Optimization Including Muscular Dynamics, a New Simulation Method Applied to Goal Directed Movements
,”
J. Biomech.
,
27
(
7
), pp.
953
960
.10.1016/0021-9290(94)90267-4
5.
Blajer
,
W.
, and
Czaplicki
,
A.
,
2001
, “
Modeling and Inverse Simulation of Somersaults on the Trampoline
,”
J. Biomech.
,
34
(
12
), pp.
1619
1629
.10.1016/S0021-9290(01)00139-7
6.
Crolet
,
J. M.
,
Aoubiza
,
B.
, and
Meunier
,
A.
,
1993
, “
Compact Bone: Numerical Simulation of Mechanical Characteristics
,”
J. Biomech.
,
26
(
6
), pp.
677
687
.10.1016/0021-9290(93)90031-9
7.
Blajer
,
W.
,
Dziewiecki
,
K.
, and
Mazur
,
Z.
,
2007
, “
Multibody Modeling of Human Body for the Inverse Dynamics Analysis of Sagittal Plane Movements
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
217
232
.10.1007/s11044-007-9090-2
8.
Lu
,
L.
,
2007
, “
Inverse Modelling and Inverse Simulation for System Engineering and Control Applications
,” Ph.D. thesis, Faculty of Engineering, University of Glasgow, Scotland, UK.
9.
Murray-Smith
,
D. J.
,
2011
, “
Feedback Methods for Inverse Simulation of Dynamic Models for Engineering Systems Applications
,”
Math. Comput. Modell. Dyn. Syst.
,
17
(
5
), pp.
515
541
.10.1080/13873954.2011.584323
10.
Blajer
W.
,
G. J.
,
Krawczyk
M.
,
2001
, “
Prediction of the Dynamic Characteristics and Control of Aircraft in Prescribed Trajectory Flight
,”
J. Theor. Appl. Mech.
,
39
(
1
), pp.
79
103
.
11.
Celi
,
R.
,
2000
, “
Optimization-Based Inverse Simulation of a Helicopter Slalom Maneuver
,”
J. Guid. Control Dyn.
,
23
(
2
), pp.
289
297
.10.2514/2.4521
12.
Öström
,
J.
,
2007
,
Enhanced Inverse Flight Simulation for a Fatigue Life Management System
,
Hilton Head
,
SC
, Vol.
1
, pp.
60
68
.
13.
Doyle
,
S. A.
, and
Thomson
,
D. G.
,
2000
, “
Modification of a Helicopter Inverse Simulation to Include an Enhanced Rotor Model
,”
J. Aircr.
,
37
(
3
), pp.
536
538
.10.2514/2.2633
14.
De
Divitiis
,
N.
,
1999
, “
Inverse Simulation of Aeroassisted Orbit Plane Change of a Spacecraft
,”
J. Spacecr. Rockets
,
36
(
6
), pp.
882
889
.10.2514/2.3507
15.
Gu
,
X.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Brach
,
R. M.
,
Budhiraja
,
A. S.
,
2000
, “
Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Design Optimization
Struct. Multidiscip. Optim.
,
20
(
3
), pp.
190
213
.10.1007/s001580050148
16.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
,
2005
, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design under Uncertainty
,”
Trans. ASME J. Mech. Des.
,
127
(
5
), pp.
875
886
.
17.
Oberkampf
,
W. L.
,
Deland
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
,
2002
, “
Error and Uncertainty in Modeling and Simulation
,”
Reliab. Eng. Syst. Saf.
,
75
(
3
), pp.
333
357
.10.1016/S0951-8320(01)00120-X
18.
Zhang
,
X. Y.
,
Jin
,
X. L.
,
Qi
,
W. G.
, and
Guo
,
Y. Z.
,
2008
, “
Vehicle Crash Accident Reconstruction Based on the Analysis 3D Deformation of the Auto-Body
,”
Adv. Eng. Software
,
39
(
6
), pp.
459
465
.10.1016/j.advengsoft.2007.05.002
19.
Xianghai
,
C.
,
Xianlong
,
J.
,
Xiaoyun
,
Z.
, and
Xinyi
,
H.
,
2011
, “
The Application for Skull Injury in Vehicle-Pedestrian Accident
,”
Int. J. Crashworthiness
,
16
(
1
), pp.
11
24
.10.1080/13588265.2010.497021
20.
Lei
,
G.
,
Xian-Long
,
J.
,
Xiao-Yun
,
Z.
,
Jie
,
S.
,
Yi-Jiu
,
C.
, and
Jian-Guo
,
C.
,
2008
, “
Study of Injuries Combining Computer Simulation in Motorcycle-Car Collision Accidents
,”
Forensic Sci. Int.
,
177
(
2–3
), pp.
90
96
.10.1016/j.forsciint.2007.10.011
21.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
,
2006
, “
Design Optimization of Hierarchically Decomposed Multilevel Systems under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
503
508
.10.1115/1.2168470
22.
Zou
,
T.
,
Cai
,
M.
,
Du
,
R.
, and
Liu
,
J.
, “
Analyzing the Uncertainty of Simulation Results in Accident Reconstruction with Response Surface Methodology
,”
Forensic Sci. Int.
,
216
, pp.
49
60
.10.1016/j.forsciint.2011.08.016
23.
Wach
,
W.
, and
Unarski
,
J.
,
2007
, “
Uncertainty of Calculation Results in Vehicle Collision Analysis
,”
Forensic Sci. Int.
,
167
(
2–3
), pp.
181
188
.10.1016/j.forsciint.2006.06.061
24.
Du
,
X.
,
2012
, “
A Reliability Approach to Inverse Simulation under Uncertainty
,”
The ASME 2012 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE)
,
ASME
,
Chicago
.10.2514/1.491
25.
Chen
,
W.
,
Baghdasaryan
,
L.
,
Buranathiti
,
T.
, and
Cao
,
J.
,
2004
, “
Model Validation Via Uncertainty Propagation and Data Transformations
,”
AIAA J.
,
42
(
7
), pp.
1406
1415
.10.2514/1.491
26.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H. Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071005
.10.1115/1.4004223
27.
Youn
,
B. D.
,
Jung
,
B. C.
,
Xi
,
Z.
,
Kim
,
S. B.
, and
Lee
,
W. R.
,
2011
, “
A Hierarchical Framework for Statistical Model Calibration in Engineering Product Development
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1421
1431
.10.1016/j.cma.2010.12.012
28.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K. L.
, and
Wang
,
S.
,
2008
, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
Trans. ASME J. Mech. Des.
,
130
(
2
),
p. 021101
.
29.
Chen
,
W.
,
Yin
,
X.
,
Lee
,
S.
, and
Liu
,
W. K.
,
2010
, “
A Multiscale Design Methodology for Hierarchical Systems With Random Field Uncertainty
,”
Trans. ASME J. Mech. Des.
,
132
(
4
), pp.
0410061
04100611
.
30.
Drignei
,
D.
,
Mourelatos
,
Z.
,
Kokkolaras
,
M.
,
Li
,
J.
, and
Koscik
,
G.
,
2011
, “
A Variable-Size Local Domain Approach to Computer Model Validation in Design Optimization
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
421
429
.
31.
Ferson
,
S.
, and
Oberkampf
,
W. L.
,
2009
, “
Validation of Imprecise Probability Models
,”
Int. J. Reliab. Saf.
,
3
(
1–3
), pp.
3
22
.10.1504/IJRS.2009.026832
32.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.10.1016/j.cma.2007.07.030
33.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K. L.
,
2008
, “
A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
ASME J. Mech. Des.
,
130
(
11
), pp.
1114011
1114019
.10.1115/1.2976449
34.
Xi
,
Z.
,
Youn
,
B. D.
, and
Hu
,
C.
,
2010
, “
Random Field Characterization Considering Statistical Dependence for Probability Analysis and Design
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101008
10.1115/1.4002293
35.
Goda
,
K.
,
2010
, “
Statistical Modeling of Joint Probability Distribution Using Copula: Application to Peak and Permanent Displacement Seismic Demands
,”
Struct. Saf.
,
32
(
2
), pp.
112
123
.10.1016/j.strusafe.2009.09.003
36.
Noh
,
Y.
,
Choi
,
K. K.
, and
Du
,
L.
,
2009
, “
Reliability-Based Design Optimization of Problems with Correlated Input Variables Using a Gaussian Copula
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
1
16
.10.1007/s00158-008-0277-9
37.
Choi
,
S. K.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
,
2007
,
Reliability-Based Structural Design
,
Springer
,
New York.
38.
Eldred
,
M. S.
, and
Burkardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,” 47th
AIAA
Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, January 2009, Paper No. 2009-0976. 10.2514/MASM0910.1016/j.ress.2007.04.002
39.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
40.
Chen, W., Tsui, K.-L., Allen, J. K., and Mistree, F., 1995, “Integration of the Response Surface Methodology With the Compromise Decision Support Problem in Developing a General Robust Design Procedure,” Proceedings of the 1995 ASME Design Engineering Technical Conference, September 17–20, Boston, MA, ASME, Des. Eng. Div.
82
(1), 485–492 (1995).
You do not currently have access to this content.