Origami is traditionally implemented in paper, which is a passive material. This research explores the use of material with embedded electronics such as printed circuit boards (PCB) as the medium for origami folding to create an interactive folding experience and to generate foldable objects with added functionalities. PCBs are produced as 2D shapes. By folding PCB arrays, it is possible to create 3D objects that contain electronic functions. Conductivity, output devices (such as light emitting diodes) and microcontroller computation can create an interactive folding experience, for user guidance and verification of the folding. We call this approach and methodology PCB origami. The work presented in this paper describes two unique interaction and fabrication techniques for creating and folding electronic materials. We demonstrate prototypes and present verification/evaluation strategies for guiding the user through the folding process.

References

1.
Kanade
,
T.
,
1980
, “
A Theory of Origami World,
Artif. Intell.
13
(
3
), pp.
279
311
.10.1016/0004-3702(80)90004-1
2.
Schenk
,
M.
, and
Guest
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL.
, p.
291
. Available at http://www.markschenk.com/research/files/schenk2010-5OSME.pdf
3.
Lang
,
R. J.
,
1989
, “
Origami Diagramming Conventions: A Historical Perspective
,” Available at http://www.langorigami.com/diagramming/diagramming.php
4.
Kato
,
J.
,
Shimanuki
,
H.
, and
Watanabe
,
T.
,
2008
, “
Automatically Making Origami Diagrams
,”
Graphics Recognition. Recent Advances and New Opportunities
,
5046
, pp.
1
8
.10.1007/978-3-540-88188-9
5.
Ju
,
W.
,
Bonanni
,
L.
,
Fletcher
,
R.
,
Hurwitz
,
R.
,
Judd
,
T.
,
Yoon
,
J.
, and
Reynolds
,
M.
,
2001
, “
Origami Desk: Integrating Technological Innovation and Human Centric Design,
Proceedings of DIS
2002
, London, 2002, ACM, New York, NY, pp.
399
405
.
6.
Kinoshita
,
Y.
, and
Watanabe
,
T.
,
2008
, “
Estimation of Folding Operation Using Silhouette of Origami,
IAENG Int. J. Comput. Sci.
,
37
(
2
), pp.
1
8
. Available at http://www.iaeng.org/IJCS/issues_v37/issue_2/IJCS_37_2_08.pdf
7.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding,
Proc. Natl. Acad. Sci. U.S.A.
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
8.
Oxman.
N.
,
2010
, “
Material-Based Design Computation
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
9.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Lubiw
,
A.
,
O'Rourke
,
J.
, and
Pashchenko
,
I.
,
1999
, “
Metamorphosis of the Cube,
Proceedings of the 15th Annual Symposium on Computational Geometry
, ACM, New York, NY, pp.
409
410
.
10.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Lubiw
,
A.
, and
O'Rourke
,
J.
,
2002
, “
Enumerating Foldings and Unfoldings Between Polygons and Polytopes,
Graphs Combinatorics
,
18
(
1
), pp.
93
104
.10.1007/s003730200005
11.
Technology—Conductive Inkjet Technology
,” Available at http://www.conductiveinkjet.com
You do not currently have access to this content.