Miura and Miura-derivative rigid origami patterns are increasingly used for engineering and architectural applications. However, geometric modelling approaches used in existing studies are generally haphazard, with pattern identifications and parameterizations varying widely. Consequently, relationships between Miura-derivative patterns are poorly understood, and widespread application of rigid patterns to the design of folded plate structures is hindered. This paper explores the relationship between the Miura pattern, selected because it is a commonly used rigid origami pattern, and first-level derivative patterns, generated by altering a single characteristic of the Miura pattern. Five alterable characteristics are identified in this paper: crease orientation, crease alignment, developability, flat-foldability, and rectilinearity. A consistent parameterization is presented for five derivative patterns created by modifying each characteristic, with physical prototypes constructed for geometry validation. It is also shown how the consistent parameterization allows first-level derivative geometries to be combined into complex piecewise geometries. All parameterizations presented in this paper have been compiled into a matlab Toolbox freely available for research purposes.

References

1.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spatial Struct.
,
50
(
162
), pp.
173
179
. Available at http://www.iass-structures.org/index.cfm/journal.article?aID=266
2.
Schenk
,
M.
,
Allwood
,
J.
, and
Guest
,
S.
,
2011
, “
Cold Gas-Pressure Folding of Miura-Ori Sheets
,”
Proceedings of International Conference on Technology of Plasticity (ICTP 2011)
, Sept. 25–30th,
Aachen, Germany
.
3.
Zakirov
,
I. M.
, and
Alekseev
,
K. A.
,
2007
, “
Parameters of a Creasing-Bending Machine as Applied to the Scheme of Transverse Rotary Shaping of Chevron Structures
,”
Russ. Aeronaut. (Iz VUZ)
,
50
(
2
), pp.
186
192
.10.3103/S1068799807020122
4.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Electron. Comput.
C-25
(
10
), pp.
1010
1019
.10.1109/TC.1976.1674542
5.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry 2010 SE - 6
,
C.
Ceccato
,
L.
Hesselgren
,
M.
Pauly
,
H.
Pottmann
, and
J.
Wallner
, eds.,
Springer
,
Vienna
pp.
87
102
.
6.
Hull
,
T.
,
2006
, “
Exploring Flat Vertex Folds
,”
Project Origami: Activities for Exploring Mathematics
,
A K Peters, Ltd.
,
Wellesley, MA
, pp.
215
230
.
7.
Miura
,
K.
,
2009
, “
The Science of Miura-Ori: A Review
,”
Origami4: Fourth International Meeting of Origami Science, Mathematics, and Education
,
R. J.
Lang
, ed.,
A K Peters, Ltd.
,
Natick, MA
, pp.
87
99
.
8.
Miura
,
K.
,
1972
, “
Zeta-Core Sandwich-Its Concept and Realization
,”
Inst. Space Aeronaut. Sci., Univ. Tokyo
,
480
, pp.
137
164
.
9.
Fischer
,
S.
,
Drechsler
,
K.
,
Kilchert
,
S.
, and
Johnson
,
A.
,
2009
, “
Mechanical Tests for Foldcore Base Material Properties
,”
Composites, Part A
,
40
(
12
), pp.
1941
1952
.10.1016/j.compositesa.2009.03.005
10.
Heimbs
,
S.
,
2013
, “
Foldcore Sandwich Structures and Their Impact Behaviour: An Overview
,”
Dynamic Failure of Composite and Sandwich Structures SE - 11, Solid Mechanics and Its Applications
,
Springer
,
Netherlands
, Vol.
192
, pp.
491
544
.
11.
Khaliulin
,
V. I.
,
2005
, “
A Technique for Synthesizing the Structures of Folded Cores of Sandwich Panels
,”
Russ. Aeronaut.
,
48
(
1
), pp.
8
16
.
12.
Zakirov
,
I.
, and
Alexeev
,
K.
,
2006
, “
New Folded Structures for Sandwich Panels
,”
Proceedings of SAMPE Conference
, pp.
1
11
.
13.
Talakov
,
M. A.
,
2010
, “
Investigation of Folded Structure Geometry With Double Curvature
,”
Russ. Aeronaut.
,
53
(
3
), pp.
334
338
.10.3103/S1068799810030141
14.
Alekseev
,
K. A.
,
2011
, “
Geometrical Simulation of Regular and Irregular Folded Structures
,”
Russ. Aeronaut. (Iz VUZ)
,
54
(
1
), pp.
84
88
.10.3103/S1068799811010144
15.
De Temmerman
,
N.
,
Mollaert
,
M.
,
Van Mele
,
T.
, and
De Laet
,
L.
,
2007
, “
Design and Analysis of a Foldable Mobile Shelter System
,”
Int. J. Space Struct.
,
22
(
3
), pp.
161
168
.10.1260/026635107782218868
16.
Weinand
,
Y.
,
2009
, “
Innovative Timber Constructions
,”
Symposium of the International Association for Shell and Spatial Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures: Proceedings, Editorial de la Universitat Politécnica de Valencia
.
17.
Künstler
,
A.
, and
Trautz
,
M.
,
2011
, “
Deployable Folding Patterns Using Stiff Plate Elements
,”
Bautechnik
88
(
2
), pp.
86
93
.10.1002/bate.201110008
18.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
, 2012, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p. 031003.10.1115/1.4005601
19.
Albermani
,
F.
,
Khalilpasha
,
H.
, and
Karampour
,
H.
,
2011
, “
Propagation Buckling in Deep Sub-Sea Pipelines
,”
Eng. Struct.
,
33
(
9
), pp.
2547
2553
.10.1016/j.engstruct.2011.04.026
20.
Ma
,
J.
, and
You
,
Z.
,
2011
, “
The Origami Crash Box
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
, eds.,
Taylor & Francis Group
, pp.
277
290
.
21.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
, eds.,
Taylor & Francis
, pp.
253
264
.
22.
Nguyen
,
M. Q.
,
Jacombs
,
S. S.
,
Thomson
,
R. S.
,
Hachenberg
,
D.
, and
Scott
,
M. L.
,
2005
, “
Simulation of Impact on Sandwich Structures
,”
Compos. Struct.
,
67
(
2
), pp.
217
227
.10.1016/j.compstruct.2004.09.018
23.
Klett
,
Y.
, and
Drechsler
,
K.
,
2011
, “
Designing Technical Tessellations
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
, eds.,
Taylor & Francis Group
, pp.
305
322
.
24.
Lebée
,
A.
, and
Sab
,
K.
,
2012
, “
Homogenization of Thick Periodic Plates: Application of the Bending-Gradient Plate Theory to a Folded Core Sandwich Panel
,”
Int. J. Solids Struct.
,
49
(
19
), pp.
2778
2792
.10.1016/j.ijsolstr.2011.12.009
25.
Tessellated Group
,
2013
, www.tessellated.com
26.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,”
Proceedings of the 1st International Meeting of Origami Science and Technology
, pp.
229
237
.
27.
Gattas
,
J. M.
,
2013
, Rigid Origami Toolbox, Available at: http://joegattas.com/rigid-origami-toolbox/
You do not currently have access to this content.