Origami engineering—the practice of creating useful three-dimensional structures through folding and fold-like operations on two-dimensional building-blocks—has the potential to impact several areas of design and manufacturing. In this article, we study a new concept for a self-folding system. It consists of an active, self-morphing laminate that includes two meshes of thermally-actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The goal of this article is to analyze the folding behavior and examine key engineering tradeoffs associated with the proposed system. We consider the impact of several design variables including mesh wire thickness, mesh wire spacing, thickness of the insulating elastomer layer, and heating power. Response parameters of interest include effective folding angle, maximum von Mises stress in the SMA, maximum temperature in the SMA, maximum temperature in the elastomer, and radius of curvature at the fold line. We identify an optimized physical realization for maximizing folding capability under mechanical and thermal failure constraints. Furthermore, we conclude that the proposed self-folding system is capable of achieving folds of significant magnitude (as measured by the effective folding angle) as required to create useful 3D structures.

References

References
1.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
Cambridge, United Kingdom
.
2.
Hull
,
T.
,
1994
, “
On the Mathematics of Flat Origamis
,”
Congr. Numer.
,
100
, pp.
215
224
. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.2679
3.
Kawasaki
,
T.
,
1989
, “
On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami
,”
1st International Meeting on Origami Science and Technology
,
H.
Huzita
, ed.,
Ferrara
,
Italy
.
4.
Lang
,
R. J.
,
1996
, “
A Computational Algorithm for Origami Design
,” 12th Annual ACM Symposium on Computational Geometry, pp.
98
105
.
5.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure using Bidirectionally Flat-foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry
,
Springer-Verlag
,
New York
.
6.
Pandey
,
S.
,
Weing
,
M.
,
Kunas
,
A.
,
Nguyen
,
N.
,
Gracias
,
D. H.
, and
Menon
,
G.
,
2011
, “
Algorithmic Design of Self-Folding Polyhedra
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
50
), pp.
19885
19890
.10.1073/pnas.1110857108
7.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami 5: Fifth International Meeting of Origami Science
,
Mathematics and Education
,
CRC Press
, Boca Raton, FL.
8.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
International Association for Shell and Spatial Structures (IASS) Symposium
,
Shanghai, China
.
9.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng.
,
A
,
419
, pp.
131
137
.10.1016/j.msea.2005.12.016
10.
Early
,
J.
,
Hyde
,
R.
, and
Baron
,
R.
,
2003
, “
Twenty Meter Space Telescope Based on Diffractive Fresnel Lens
,”
Proc. SPIE
,
5166
, pp.
148
156
.10.1117/12.506232
11.
Buri
,
H.
, and
Weinand
,
Y.
,
2008
, “
ORIGAMI—Folded Plate Structures, Architecture
,”
10th World Conference on Timber Engineering
, June 2–5, 2008, Miyazaki, Japan.
12.
Zanardi Ocampo
,
J. M.
,
Vaccaro
,
P. O.
,
Kubota
,
K.
,
Fleischmann
,
T.
,
Wang
,
T.-S.
,
Aida
,
T.
,
Ohnishi
,
T.
,
Sugimura
,
A.
,
Izumoto
,
R.
,
Hosoda
,
M.
, and
Shigeki
,
N.
,
2004
, “
Characterization of GaAs-Based Micro-Origami Mirrors by Optical Actuation
,”
Microelectron. Eng.
,
73-74
, pp.
429
434
.10.1016/S0167-9317(04)00182-0
13.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorbtion
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.10.1039/c1sm06564e
14.
Randall
,
C. L.
,
Gultepe
,
E.
, and
Gracias
,
D. H.
,
2011
, “
Self-Folding Devices and Materials for Biomedical Applications
,”
Trends Biotechnol.
,
30
(
3
), pp.
138
146
.10.1016/j.tibtech.2011.06.013
15.
Randhawa
,
J. S.
,
Laflin
,
K. E.
,
Seelam
,
N.
, and
Gracias
,
D. H.
,
2011
, “
Microchemomechanical Systems
,”
Adv. Funct. Mater.
,
21
(
13
), pp.
2395
2410
.10.1002/adfm.201100482
16.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
17.
Hartl
,
D.
,
Lane
,
K.
, and
Malak
,
R. J.
,
2012
, “
Computational Design of a Reconfigurable Origami Space Structure Incorporating Shape Memory Alloy Thin Films
,”
2012 Conference on Smart Materials, Adaptive Structures, and Intelligent Systems (SMASIS 20120)
, Stone Mountain, GA, SMASIS2012-8219.
18.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
, and
Malak
,
R.
,
2013
, “
Simulation-Based Design of a Self-Folding Smart Material System
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference (IDECT/CIE 2013)
, IDETC2013-13439
, August 4–7, 2013, Portland, OR.
19.
Lagoudas
,
D.
,
Hartl
,
D.
,
Chemisky
,
Y.
,
Machado
,
L.
, and
Popov
,
P.
,
2012
, “
Constitutive Model for Polycrystaline Shape Memory Alloys With Smooth Transformation Surfaces
,”
Int. J. Plast.
,
32-33
, pp.
155
183
.10.1016/j.ijplas.2011.10.009
20.
Otsuka
,
K.
, and
Wayman
,
C. M.
,
1999
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, United Kingdom
.
21.
McNaney
,
J. M.
,
Imbeni
,
V.
,
Jung
,
Y.
,
Papadopoulos
,
P.
, and
Ritchie
,
R. O.
,
2003
, “
An Experimental Study of the Superelastic Effect in a Shape-Memory Nitinol Alloy Under Biaxial Loading
,”
Mech. Mater.
,
35
, pp.
969
986
.10.1016/S0167-6636(02)00310-1
22.
Khan
,
A. S.
, and
Huang
,
S.
,
1995
,
Continuum Theory of Plasticity
,
Wiley
,
New York.
23.
Slaughter
,
W. S.
,
2002
, The Linearized Theory of Elasticity,
Birkhäuser
,
Boston, MA
.10.1007/978-1-4612-0093-2
24.
Hartl
,
D.
,
Lagoudas
,
D.
,
Mabe
,
J.
,
Calkins
,
F.
, and
Mooney
,
J.
,
2009
, “
Use of a Ni60Ti Shape Memory Alloy for Active Jet Engine Chevron Application: II. Experimentally Validated Numerical Analysis
,
Smart Mater. Struct.
,
19
, p.
015021
.10.1088/0964-1726/19/1/015021
25.
Lagoudas
,
D. C.
, eds.,
2008
,
Shape Memory Alloys: Modeling and Engineering Applications
,
Springer
,
New York
.
26.
Treloar
,
L.
,
1944
, “
Stress-Strain Data for Vulcanised Rubber Under Various Types of Deformation
,”
Rubber Chem. Technol.
,
17
, pp.
813
825
.10.5254/1.3546701
27.
Meissner
,
B.
,
2000
, “
Tensile Stress-Strain Behaviour of Rubber Like Networks up to Break. Theory and Experimental Comparison
,”
Polymer
,
41
, pp.
7827
7841
.10.1016/S0032-3861(00)00114-2
28.
Purshouse
,
R. C.
, and
Fleming
,
P. J.
,
2003
, “
Evolutionary Many-Objective Optimisation: An Exploratory Analysis
,”
Proc. Evolutionary Computation, 2003
. CEC'03. The 2003 Congress on, Vol. 3, pp.
2066
2073
.
29.
Tax
,
D. M. J.
, and
Duin
,
R. P. W.
,
1999
, “
Data Domain Description Using Support Vectors
,”
Proc. European Symposium on Artificial Neural Networks
,
Bruges, Belgium
, pp.
251
256
.
You do not currently have access to this content.