An origami design method based on topology optimization is introduced. The design of a folding pattern is cast as a problem of assigning presence and type of fold to lines in a “ground structure,” using folding angles as design variables. A ground structure for origami design has lines drawn on a two dimensional domain, showing all line segments that may appear as crease lines in the folded geometry. For a given ground structure and folding angles, the 3D geometry of the folded sheet can be computed using the mathematics of origami. A topology optimization method is then used to find an optimal combination of folding angles, which results in a folding pattern with desired, target geometric properties.

References

References
1.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Inst. Space Astronaut. Sci. Rep.
,
618
, pp.
1
9
.
2.
Elsayed
,
E. A.
, and
Basily
,
B. A.
,
2004
, “
Continuous Folding Process for Sheet Materials
,”
Int. J. Mater. Product Technol.
,
21
(
1/2/3
), pp.
217
238
.10.1504/IJMPT.2004.004753
3.
Fuchi
,
K.
,
Tang
,
J.
,
Crowgey
,
B.
,
Diaz
,
A. R.
,
Rothwell
,
E. J.
, and
Ouedraogo
,
R. O.
,
2012
, “
Origami Tunable Frequency Selective Surfaces
,”
IEEE Antennas Wireless Propag. Lett.
,
11
,
p. 473
475
.10.1109/LAWP.2012.2196489
4.
Fuchi.
,
K.
,
Diaz
,
A. R.
,
Rothwell
,
E. J.
,
Ouedraogo
,
R. O.
, and
Tang
,
J.
,
2012
, “
An Origami Tunable Metamaterial
,”
J. Appl. Phys.
,
111
,
p. 084905
.10.1063/1.4704375
5.
Randall
,
C. L.
,
Gultepe
,
E.
, and
Gracias
,
D.
,
2011
, “
Self-Folding Devices and Materials for Biomedical Applications
,”
Trends Biotechnol.
,
30
(
3
), pp.
138
146
.10.1016/j.tibtech.2011.06.013
6.
Gracias
,
D. H.
,
Tien
,
J.
,
Breen
,
T. L.
,
Hsu
,
C.
, and
Whitesides
,
G. M.
,
2000
, “
Forming Electrical Networks in Three Dimensions by Self-Assembly
,”
Science
,
289
, pp.
1170
1172
.10.1126/science.289.5482.1170
7.
Jamal
,
M.
,
Bassik
,
N.
,
Cho
,
J. H.
,
Randall
,
C. L.
, and
Gracias
,
D. H.
,
2010
, “
Directed Growth of Fibroblasts Into Three Dimensional Micropatterned Geometries Via Self-Assembling Scaffolds
,”
Biomaterials
,
31
, pp.
1683
1690
.10.1016/j.biomaterials.2009.11.056
8.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University
,
New York
.
9.
Belcastro
,
S.
, and
Hull
,
T.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
, pp.
273
282
.10.1016/S0024-3795(01)00608-5
10.
Lang
,
R. J.
,
1994
, “
The Tree Method of Origami Design
,”
The Second International Meeting of Origami Science and Scientific Origami
,
K.
Miura
, ed.,
Seian University of Art of Design
,
Otsu, Japan
, pp.
72
82
.
11.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
The Fourth International Conference on Origami in Science, Mathematics, and Education
,
R.
Lang
, ed.,
Pasadena
, pp.
175
187
.
12.
Lang
,
R. J.
,
1998
, “
Threemaker 4.0: A Program for Origami Design
,” Available at: http://www.langorigami.com/science/computational/treemaker/TreeMkr40.pdf
13.
Tachi
,
T.
,
2009
, “
3D Origami Design Based on Tucking Molecule
,”
The Fourth International Conference on Origami in Science, Mathematics, and Education
,
R.
Lang
, ed.,
Pasadena
, pp.
259
272
.
14.
Tachi
,
T.
,
2010
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Vis. Comput. Graph.
,
16
(
2
), pp.
298
311
.10.1109/TVCG.2009.67
15.
Dorn
,
W. S.
,
Gomory
,
R. E.
, and
Greenberg
,
H. J.
,
1964
, “
Automatic Design of Optimal Structures
,”
J. Mech.
,
3
, pp.
25
52
.
16.
Bendsøe
,
M. P.
,
Bental
,
A.
, and
Zowe
,
J.
,
1994
, “
Optimization Methods for Truss Geometry and Topology Design
,”
Struct. Multidiscip. Optim.
,
7
(
3
), pp.
141
159
.10.1007/BF01742459
17.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Articulated Mechanism Design With a Degree of Freedom Constraint
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
1520
1545
.10.1002/nme.1119
18.
Gjerde
,
E.
,
2008
,
Origami Tessellations: Awe-Inspiring Geometric Designs
,
A K Peters
,
MA
.
19.
Tachi
,
T.
, and
Demaine
,
E.
,
D.
,
2010
, “
Degenerative Coordinates in 22.5 deg Grid System
,”
The Fifth International Meeting of Origami Science, Mathematics and Education
,
P.
Wang-Iverson
,
R. J.
Lang
, and
M.
Yim
, eds.,
Singapore Management University
,
Singapore
, pp.
489
497
.
20.
Maekawa
,
J.
,
2008
,
Genuine Origami: 43 Mathematically-Based Models, From Simple to Complex
,
Japan Publications Trading
,
Tokyo
.
21.
Byrd
,
R. H.
,
Hribar
,
M. E.
, and
Nocedal
,
J.
,
1999
, “
An Interior Point Algorithm for Large-Scale Nonlinear Programming
,”
SIAM J. Optim.
,
9
(
4
), pp.
877
900
.10.1137/S1052623497325107
22.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.10.1007/PL00011391
23.
Waltz
,
R. A.
,
Morales
,
J. L.
,
Nocedal
,
J.
, and
Orban
,
D.
,
2006
, “
An Interior Algorithm for Nonlinear Optimization that Combines Line Search and Trust Region Steps
,”
Math. Program.
,
107
(
3
), pp.
391
408
.10.1007/s10107-004-0560-5
You do not currently have access to this content.