Analytical target cascading (ATC), a hierarchical, multilevel, multidisciplinary coordination method, has proven to be an effective decomposition approach for large-scale engineering optimization problems. In recent years, augmented Lagrangian relaxation methods have received renewed interest as dual update methods for solving ATC decomposed problems. These problems can be solved using the subgradient optimization algorithm, the application of which includes three schemes for updating dual variables. To address the convergence efficiency disadvantages of the existing dual update schemes, this paper investigates two new schemes, the linear and the proximal cutting plane methods, which are implemented in conjunction with augmented Lagrangian coordination for ATC-decomposed problems. Three nonconvex nonlinear example problems are used to show that these two cutting plane methods can significantly reduce the number of iterations and the number of function evaluations when compared to the traditional subgradient update methods. In addition, these methods are also compared to the method of multipliers and its variants, showing similar performance.

References

References
1.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.10.1115/1.1582501
2.
Kim
,
H. M.
,
2001
, “
Target Cascading in Optimal System Design
,” Ph.D. thesis, University of Michigan, Ann Arbor.
3.
Sobieszczanski-Sobieski
,
J.
,
1988
, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,”
Proceedings of the 2nd NASA Air Force Symposium on Advances in Multidisciplinary Analysis and Optimization
.
4.
Braun
,
R. D.
,
1996
,
Collaborative Optimization: an Architecture for Large-Scale Distributed Design
,” Ph.D. thesis, Stanford University, Stanford, CA.
5.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J. S.
, and
Sandusky
,
R. R.
, Jr.
,
2000
, “
Bi-Level Integrated System Synthesis
,”
AIAA J.
,
38
(
1
), pp.
164
172
.10.2514/2.937
6.
Haftka
,
R. T.
, and
Watson
,
L. T.
,
2005
, “
Multidisciplinary Design Optimization With Quasi-Separable Subsystems
,”
Optim. Eng.
,
6
(
1
), pp.
9
20
.10.1023/B:OPTE.0000048534.58121.93
7.
Demiguel
,
A. V.
, and
Murray
,
W.
,
2006
, “
A Local Convergence Analysis of Bi-Level Decomposition Algorithms
,”
Optim. Eng.
,
7
(
2
), pp.
99
133
.10.1007/s11081-006-6835-3
8.
Lassiter
,
J. B.
,
Wiecek
,
M. M.
, and
Andrighetti
,
K. R.
,
2005
, “
Lagrangian Coordination and Analytical Target Cascading: Solving ATC-Decomposed Problems With Lagrangian Duality
,”
Optim. Eng.
,
6
(
3
), pp.
361
381
.10.1007/s11081-005-1744-4
9.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
,
2008
, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
,
130
(
5
), p.
0514021
.10.1115/1.2838334
10.
Bertsekas
,
D. P.
,
2003
,
Nonlinear Programming
,
2nd ed.
,
Athena Scientific
,
Nashua, NH
.
11.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
,
2006
,
Nonlinear Programming: Theory and Algorithms
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
12.
Blouin
,
V. Y.
,
Lassiter
,
J.
,
Wiecek
,
M. M.
, and
Fadel
,
G. M.
,
2005
, “
Augmented Lagrangian Coordination for Decomposed Design Problems
,”
Proceedings of the 6th World Congress on Structural and Multidisciplinary Optimization
.
13.
Kim
,
H. M.
,
Chen
,
W.
, and
Wiecek
,
M. M.
,
2006
, “
Lagrangian Coordination for Enhancing the Convergence of Analytical Target Cascading
,”
AIAA J.
,
44
(
10
), pp.
2197
2207
.10.2514/1.15326
14.
Blouin
,
V. Y.
,
Samuels
,
H. B.
,
Fadel
,
G. M.
,
Haque
,
I. U.
, and
Wagner
,
J. R.
,
2004
, “
Continuously Variable Transmission Design for Optimum Vehicle Performance by Analytical Target Cascading
,”
Int. J. Heavy Veh. Syst., Spec. Issue Adv. Ground Veh. Simul.
,
11
(
2/3
), pp.
327
348
.10.1504/IJHVS.2004.005454
15.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
,
2005
, “
Technical Brief: Weights, Norms, and Notation in Analytical Target Cascading
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
499
501
.10.1115/1.1862674
16.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
,
2005
, “
An Efficient Weighting Update Method to Achieve Acceptable Inconsistency Deviation in Analytical Target Cascading
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
206
214
.10.1115/1.1830046
17.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
,
2006
, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Directions Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
.10.1007/s00158-005-0579-0
18.
Gasimov
,
R. N.
,
2002
, “
Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Non-Convex Programming
,”
J. Global Optim.
,
24
, pp.
187
203
.10.1023/A:1020261001771
19.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
,
2007
, “
An Augmented Lagrangian Decomposition Method for Quasi-Separable Problems in MDO
,”
Struct. Multidiscip. Optim.
,
34
(
3
), pp.
211
227
.10.1007/s00158-006-0077-z
20.
Tzevelekos
,
N.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
,
Hulshof
,
M. F.
,
Etman
,
L. 7E. P.
, and
Rooda
J. E.
,
2003
, “
An Empirical Local Convergence Study of Alternative Coordination Schemes in Analytical Target Cascading
,”
Proceedings of the 5th World Congress on Structural and Multidisciplinary Optimization, Lido di Jesolo
,
Venice, Italy
.
21.
Golinski
,
J.
,
1970
, “
Optimal Synthesis Problems Solved by Means of Nonlinear Programming and Random Methods
,”
J. Mech.
,
5
(
3
), pp.
287
309
.10.1016/0022-2569(70)90064-9
22.
Padula
,
S. L.
,
Alexandrov
,
N.
, and
Green
,
L. L.
,
1996
, “
MDO Test Suite at NASA Langley Research Center
,” Technical Report No. 96-4028, Bellevue, Washington, September 4–6.
23.
Allison
,
J. T.
,
Kokkolaras
,
M.
,
Zawislak
,
M.
, and
Papalambros
,
P. Y.
,
2005
,
On the Use of Analytical Target Cascading and Collaborative Optimisation for Complex System Design
,”
Proceedings of the 6th World Congress on Structural and Multidisciplinary Optimization
,
Rio de Janeiro, Brazil
.
24.
Bertsekas
,
D. P.
,
1999
,
Nonlinear Programming
,
Athena Scientific
,
Nashua, NH
.
25.
Goffin
,
J. L.
,
1977
, “
On Convergence Rates of Subgradient Optimization Methods
,”
Math. Program.
,
13
(
1
), pp.
329
347
.10.1007/BF01584346
You do not currently have access to this content.