Lightweight design is needed for many engineering structures, but conventional design methods cannot always meet requirements. Natural organisms have developed many types of structures with excellent properties and ingenious construction, and they can provide many new design ideas. In this paper, a thin-walled cylindrical shell, one of the most common structures, is designed to resist buckling based on the study of bionics. First, the structure and function of bamboo node are described, and a statistical analysis of internode length-to-diameter ratio in bamboo is performed to investigate structural characteristics of bamboo node. Then, through buckling analysis of three relevant experimental models, the action mechanism of bamboo node is investigated, and two rules for application of this structure in engineering are proposed. Finally, a bionic design method is introduced, and a lightweight design for a thin-walled cylindrical shell based on this method is presented. A comparison between the bionic shell and a conventional one shows that the weight was reduced by as much as 20.5%.

References

References
1.
Immarigeon
,
J.-P.
,
Holt
,
R. T.
,
Koul
,
A. K.
,
Zhao
,
L.
,
Wallace
,
W.
, and
Beddoes
,
J. C.
,
1995
, “
Lightweight Materials for Aircraft Applications
,”
Mater. Charact.
,
35
(
1
), pp.
41
67
.10.1016/1044-5803(95)00066-6
2.
Cole
,
G. S.
, and
Sherman
,
A. M.
,
1995
, “
Lightweight Materials for Automotive Applications
,”
Mater. Charact.
,
35
(
1
), pp.
3
9
.10.1016/1044-5803(95)00063-1
3.
Jambor
,
A.
, and
Beyer
,
M.
,
1997
, “
New Cars–New Materials
,”
Mater. Des.
,
18
(
4/6
), pp.
203
209
.10.1016/S0261-3069(97)00049-6
4.
Kim
,
D. I.
,
Jung
,
S. C.
,
Lee
,
J. E.
, and
Chang
,
S. H.
,
2006
, “
Parametric Study on Design of Composite–Foam–Resin Concrete Sandwich Structures for Precision Machine Tool Structures
,”
Compos. Struct.
,
75
(
1–4
), pp.
408
414
.10.1016/j.compstruct.2006.04.022
5.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.10.1016/0045-7825(88)90086-2
6.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.10.1007/BF01650949
7.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.10.1016/0045-7949(93)90035-C
8.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
C. R. Math.
,
334
(
12
), pp.
1125
1130
.
9.
Tushtev
,
K.
,
Murck
,
M.
, and
Grathwohl
,
G.
,
2008
, “
On the Nature of the Stiffness of Nacre
,”
Mater. Sci. Eng. C
,
28
(
7
), pp.
1164
1172
.10.1016/j.msec.2007.10.039
10.
Chen
,
P. Y.
,
Lin
,
A. Y. M.
,
Lin
,
Y. S.
,
Seki
,
Y.
,
Stokes
,
A. G.
,
Peyras
,
J.
,
Olevsky
,
E. A.
,
Meyers
,
M. A.
, and
Mckittrick
,
J.
,
2008
, “
Structure and Mechanical Properties of Selected Biological Materials
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
3
), pp.
208
226
.10.1016/j.jmbbm.2008.02.003
11.
Cen
,
H.
,
Chen
,
W.
,
Yu
,
M.
, and
Liu
,
X.
,
2005
, “
Structural Bionics for Reinforcing Frame of Fuselage and Wing Joint
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
31
(
1
), pp.
13
16
.1001-5965(2005)01-0013-04
12.
Ma
,
J.
,
Chen
,
W.
,
Zhao
,
L.
, and
Zhao
,
D.
,
2009
, “
Bionic Design of Aircraft Reinforced Frame Based on Structure of Dragonfly Wing
,”
ACTA Aeronaut. Astronaut. Sinica
,
30
(
3
), pp.
562
569
.1000-6893(2009)03-0562-08
13.
Zhao
,
L.
,
Chen
,
W.
, and
Ma
,
J.
,
2008
, “
Lightweight Design of High-Speed Working Table Based on Structural Bionic
,”
Mod. Mach. Tool Automat. Manuf. Tech.
, (
1
), pp.
1
4
.
14.
Jiao
,
H.
,
Zhang
,
Y.
, and
Chen
,
W.
,
2010
, “
The Lightweight Design of Low RCS Pylon Based on Structural Bionics
,”
J. Bionic Eng.
,
7
(
2
), pp.
182
190
.10.1016/S1672-6529(09)60207-9
15.
Weaver
,
P. M.
,
2000
, “
Design of Laminated Composite Cylindrical Shells Under Axial Compression
,”
Composites, Part B
,
31
(
8
), pp.
669
679
.10.1016/S1359-8368(00)00029-9
16.
Weaver
,
P. M.
,
Driesen
,
J. R.
, and
Roberts
,
P.
,
2002
, “
Anisotropic Effects in the Compression Buckling of Laminated Composite Cylindrical Shells
,”
Compos. Sci. Technol.
,
62
(
1
), pp.
91
105
.10.1016/S0266-3538(01)00186-5
17.
Hilburger
,
M. W.
, and
Starnes
,
J. H.
, Jr.
,
2005
, “
Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts
,”
Int. J. Non-linear Mech.
,
40
(
7
), pp.
1005
1021
.10.1016/j.ijnonlinmec.2005.02.001
18.
Li
,
S.
, and
Batra
,
R. C.
,
2006
, “
Buckling of Axially Compressed Thin Cylindrical Shells With Functionally Graded Middle Layer
,”
Thin-Walled Struct.
,
44
(
10
), pp.
1039
1047
.10.1016/j.tws.2006.10.006
19.
Karam
,
G. N.
, and
Gibson
,
L. J.
,
1995
, “
Elastic Buckling of Cylindrical Shells With Elastic Cores—I: Analysis
,”
Int. J. Solids Struct.
,
32
(
8–9
), pp.
1259
1283
.10.1016/0020-7683(94)00147-O
20.
Karam
,
G. N.
, and
Gibson
,
L. J.
,
1995
, “
Elastic Buckling of Cylindrical Shells With Elastic Cores—II: Experiments
,”
Int. J. Solids Struct.
,
32
(
8–9
), pp.
1285
1306
.10.1016/0020-7683(94)00148-P
21.
Dawson
,
M. A.
, and
Gibson
,
L. J.
,
2007
, “
Optimization of Cylindrical Shells With Compliant Cores
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
1145
1160
.10.1016/j.ijsolstr.2006.06.009
22.
Jármai
,
K.
,
Snyman
,
J. A.
, and
Farkas
,
J.
,
2006
, “
Minimum Cost Design of a Welded Orthogonally Stiffened Cylindrical Shell
,”
Comput. Struct.
,
84
(
12
), pp.
787
797
.10.1016/j.compstruc.2006.01.002
23.
Hutchinson
,
J. W.
, and
He
,
M. Y.
,
2000
, “
Buckling of Cylindrical Sandwich Shells With Metal Foams Cores
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
6777
6794
.10.1016/S0020-7683(99)00314-5
24.
Ma
,
J.
,
Chen
,
W.
,
Zhao
,
L.
, and
Zhao
,
D.
,
2008
, “
Elastic Buckling of Bionic Cylindrical Shells Based on Bamboo
,”
J. Bionic Eng.
,
5
(
3
), pp.
231
238
.10.1016/S1672-6529(08)60029-3
25.
Xing
,
D.
,
Chen
,
W.
,
Ma
,
J.
, and
Zhao
,
L.
,
2011
, “
Structural Bionic Design for Thin-Walled Cylindrical Shell Against Buckling Under Axial Compression
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
225
(
11
), pp.
2619
1627
.10.1177/0954406211407820
26.
Shao
,
Z.
,
Huang
,
S.
,
Wu
,
F.
,
Zhou
,
L.
, and
Arnaud
,
C.
,
2008
, “
A Study on the Difference of Structure and Strength Between Internodes and Nodes of Moso Bamboo
,”
J. Bamboo Res.
,
27
(
2
), pp.
48
52
.
27.
Amada
,
S.
,
Ichikawa
,
Y.
,
Munekata
,
T.
,
Nagase
,
Y.
, and
Shimizu
,
H.
,
1997
, “
Fiber Texture and Mechanical Graded Structure of Bamboo
,”
Composites, Part B
,
28
(
1–2
), pp.
13
20
.10.1016/S1359-8368(96)00020-0
28.
Amada
,
S.
,
Munekata
,
T.
,
Nagase
,
Y.
,
Ichikawa
,
Y.
,
Kirigai
,
A.
, and
Zhifei
,
Y.
,
1996
, “
Mechanical Structures of Bamboos in Viewpoint of Functionally Gradient and Composite Materials
,”
J. Compos. Mater.
,
30
(
7
), pp.
800
819
.10.1177/002199839603000703
29.
Xiong
,
W.
,
Ding
,
Z.
, and
Li
,
Y.
,
1980
, “
Intercalary Meristem and Internodal Elongation of Bamboo Plants
,”
Sci. Silvae Sin.
,
16
(
2
), pp.
81
89
.
30.
Ding
,
Y.
, and
Liese
,
W.
,
1995
, “
On the Nodal Structure of Bamboo
,” J. Bamboo Res.,
14
(
1
), pp.
24
32
. Available at CNKI:SUN:ZZYJ.0.1995-01-003.
You do not currently have access to this content.