In this paper, the opportunities for managing uncertainty in simulation-based design of multiscale systems are explored using constructs from information management and robust design. A comprehensive multiscale design problem, the concurrent design of material and product is used to demonstrate our approach. The desired accuracy of the simulated performance is determined by the trade-off between computational cost for model refinement and the benefits of mitigated uncertainty from the refined models. Our approach consists of integrating: (i) a robust design method for multiscale systems and (ii) an improvement potential based approach for quantifying the cost-benefit trade-off for reducing uncertainty in simulation models. Specifically, our approach focuses on allocating resources for reducing model parameter uncertainty arising due to insufficient data from simulation models. Using this approach, system level designers can efficiently allocate resources for sequential simulation model refinement in multiscale systems.

References

References
1.
Sinha
,
A.
,
2011
, “
Uncertainty Management in Design of Multiscale Systems
,” M.S. thesis, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
2.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H. J.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
J. Mech. Des.
,
128
(
4
), pp.
832
843
.10.1115/1.2202880
3.
Chen
,
W.
,
Allen
,
J. K.
,
Mavris
,
D. N.
, and
Mistree
,
F.
,
1996
, “
A Concept Exploration Method for Determining Robust Top-Level Specifications
,”
Eng. Optimiz.
,
26
(
2
), pp.
137
158
.10.1080/03052159608941114
4.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K. L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
J. Mech. Des.
,
118
(
4
), pp.
478
485
.10.1115/1.2826915
5.
Choi
,
H. J.
,
McDowell
,
D. L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty
,”
Eng. Optimiz.
,
40
(
4
), pp.
287
307
.10.1080/03052150701742201
6.
Nair
,
V.
,
1992
, “
Taguchi Parameter Design: A Panel Discussion
,”
Technometircs
,
34
, pp.
127
161
.10.1080/00401706.1992.10484904
7.
Tsui
,
K.-L.
,
1992
, “
An Overview of Taguchi Method and Newly Developed Statistical Methods for Robust Design
,”
IIE Trans.
,
24
(
5
), pp.
44
57
.10.1080/07408179208964244
8.
Panchal
,
J. H.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
A Value-of-Information Based Approach to Simulation Model Refinement
,”
Eng. Optimiz.
,
40
(
3
), pp.
223
251
.10.1080/03052150701690764
9.
Isukapalli
,
S. K.
,
Roy
,
A.
, and
Georgopoulos
,
P. G.
,
1998
, “
Stochastic Response Surface Methods (Srsms) for Uncertainty Propagation: Applications to Environmental and Biological Systems
,”
Risk Anal.
,
18
(
3
), pp.
351
363
.10.1111/j.1539-6924.1998.tb01301.x
10.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design
,”
J. Mech. Des.
,
128
, pp.
945
958
.10.1115/1.2204974
11.
Xiong
,
Y.
,
Chen
,
W.
,
Tsui
,
K.-L.
, and
Apley
,
D.
,
2009
, “
A Better Understanding of Model Updating Strategies in Validating Engineering Models
,”
J. Comput. Methods Appl. Mech. Eng.
,
198
(
15–16
), pp.
1327
1337
.10.1016/j.cma.2008.11.023
12.
Yin
,
X.
, and
Chen
,
W.
,
2008
, “
A Hierarchical Statistical Sensitivity Analysis Method for Complex Engineering Systems Design
,”
J. Mech. Des.
,
130
(
7
), p.
071402
.10.1115/1.2918913
13.
Yin
,
X.
,
Lee
,
S.
,
Chen
,
W.
,
Liu
,
W. K.
, and
Horstemeyer
,
M. F.
,
2009
, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,”
J. Mech. Des.
,
131
(
2
), p.
021006
.10.1115/1.3042159
14.
Wang
,
G. G.
,
2003
, “
Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points
,”
J. Mech. Des.
,
125
(
2
), pp.
210
221
.10.1115/1.1561044
15.
Xiong
,
F.
,
Xiong
,
Y.
,
Chen
,
W.
, and
Yang
,
S.
,
2009
, “
Optimizing Latin Hypercube Design for Sequential Sampling of Computer Experiments
,”
Eng. Optimiz.
,
41
(
8
), pp.
793
810
.10.1080/03052150902852999
16.
Sasena
,
M. J.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
,
2002
, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optimiz.
,
34
, pp.
263
278
.10.1080/03052150211751
17.
Hamel
,
J. M.
, and
Azarm
,
S.
,
2011
, “
Reducible Uncertain Interval Design by Kriging Metamodel Assisted Multi-Objective Optimization
,”
J. Mech. Des.
,
133
, p.
011002
.10.1115/1.4002974
18.
Quiepo
,
N. V.
,
Verde
,
A.
,
Pintos
,
S.
, and
Haftka
,
R. T.
,
2009
, “
Assessing the Value of Another Cycle in Gaussian Process Surrogate-Based Optimization
,”
Struct. Multidiscip. Optim.
,
39
(
5
), pp.
459
475
.10.1007/s00158-008-0346-0
19.
Akhtar
,
F.
,
2008
, “
Microstructure Evolution and Wear Properties of in Situ Synthesized Tib2 and Tic Reinforced Steel Matrix Composites
,”
J. Alloys Compd.
,
459
(
1–2
), pp.
491
497
.10.1016/j.jallcom.2007.05.018
20.
Choi
,
H.-J.
,
Allen
,
J. K.
,
Rosen
,
D.
,
McDowell
,
D. L.
, and
Mistree
,
F.
,
2005
, “
An Inductive Design Exploration Method for the Integrated Design of Multi-Scale Materials and Products
,”
Design Automation Conference
, Long Beach, CA, Paper No. DETC2005-85335.
21.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
J. Mech. Des.
,
125
, pp.
481
489
.10.1115/1.1586308
22.
Kim
,
H.-M.
,
Rideout
,
D. G.
,
Papalambros
,
P.
, and
Stein
,
J. L.
,
2003
, “
Analytical Target Cascading in Automotive Vehicle Design
,”
J. Mech. Des.
,
125
(
3
), pp.
481
489
.10.1115/1.1586308
23.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Kim
,
H. M.
,
2006
, “
Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization under Uncertainty
,”
J. Mech. Des.
,
128
, pp.
991
1000
.10.1115/1.2205870
24.
Sinha
,
A.
,
Srivastava
,
A.
,
Ghosh
,
S.
,
Panchal
,
J. H.
,
Allen
,
J. K.
,
Mcdowell
,
D. L.
, and
Mistree
,
F.
,
2009
, “
Microstructure-Mediated Integration of Material and Product Design—Undersea Submersible
,”
Design Automation Conference
,
Z.
Mourelatos
, ed.,
San Diego, CA
, Aug. 30–Sept. 2, Paper No. DETC2009/87217.
25.
Olson
,
G. B.
,
2000
, “
Designing a New Material World
,”
Science
,
288
(
5468
), pp.
993
998
.10.1126/science.288.5468.993
26.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B. A.
,
1993
, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Structural Optimization: Status and Promise
,
M. P.
Kamat
, ed.,
AIAA
,
Washington, D.C
.
27.
Anestiev
,
L.
,
Froyen
,
L.
, and
Van Vugt
,
L.
,
2000
, “
On the Kinetics of Diffusion Controlled Precipitation Under Microgravity
,”
J. Appl. Phys.
,
88
(
4
), pp.
2130
2137
.10.1063/1.1303849
28.
Avrami
,
M.
,
1939
, “
Kinetics of Phase Change I—General Theory
,”
J. Chem. Phys.
,
7
(
12
), pp.
1103
1112
.10.1063/1.1750380
29.
Johnson
,
W. A.
, and
Mehl
,
R. F.
,
1939
, “
Reaction Kinetics in Processes of Nucleation and Growth
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
,
135
, pp.
416
442
.
30.
Mirkovic
,
D.
,
Grobner
,
J.
,
Schmid-Fetzer
,
R.
,
Fabrichnaya
,
O.
, and
Lukas
,
H. L.
,
2004
, “
Experimental Study and Thermodynamic Re-Assessment of the Al-B System
,”
J. Alloys Compd.
,
384
(
1–2
), pp.
168
174
.10.1016/j.jallcom.2004.04.100
31.
Witusiewicz
,
V. T.
,
Bondar
,
A. A.
,
Hecht
,
U.
,
Rex
,
S.
, and
Velikanova
,
T. Y.
,
2008
, “
The Al-B-Nb-Ti System I. Re-Assessment of the Constituent Binary Systems B-Nb and B-Ti on the Basis of New Experimental Data
,”
J. Alloys Compd.
,
448
(
1–2
), pp.
185
194
.10.1016/j.jallcom.2006.10.034
32.
Witusiewicz
,
V. T.
,
Bondar
,
A. A.
,
Hecht
,
U.
,
Rex
,
S.
, and
Velikanova
,
T. Y.
,
2008
, “
The Al-B-Nb-Ti System III: Thermodynamic Re-Evaluation of the Constituent Binary System Al-Ti
,”
J. Alloys Compd.
,
465
(
1–2
), pp.
64
77
.10.1016/j.jallcom.2007.10.061
33.
Patra
,
A.
,
2009
, “
Precipitation Modeling of in-Situ Aluminum-TiB2 Composite
,” B. Tech. thesis, Indian Institute of Technology, Kharagpur.
34.
Lenka
,
S.
,
2010
, “
Modeling of Microstructural Evolution in Metal Matrix Composites and Correlation of Process Variables on Grain Size of Composite
,” B. Tech. thesis, Indian Institute of Technology, Kharagpur.
35.
Dvorak
,
G. J.
,
Chen
,
T. Y.
, and
Teply
,
J.
,
1992
, “
Thermomechanical Stress-Fields in High-Temperature Fibrous Composites 1. Unidirectional Laminates
,”
Compos. Sci. Technol.
,
43
(
4
), pp.
347
358
.10.1016/0266-3538(92)90058-B
36.
Wu
,
J. F.
,
Shephard
,
M. S.
,
Dvorak
,
G. J.
, and
Baheieldin
,
Y. A.
,
1989
, “
A Material Model for the Finite-Element Analysis of Metal Matrix Composites
,”
Compos. Sci. Technol.
,
35
(
4
), pp.
347
366
.10.1016/0266-3538(89)90057-2
37.
Zhang
,
Z.
, and
Chen
,
D. L.
,
2006
, “
Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength
,”
Scr. Mater.
,
54
(
7
), pp.
1321
1326
.10.1016/j.scriptamat.2005.12.017
38.
Mishra
,
D.
,
2010
, “
Structure-Property Correlation of Metal Matrix Composites
,” B.Tech. thesis, Indian Institute of Technology, Kharagpur.
39.
Bera
,
N.
,
2010
, “
Microstructure Mapping and System Level Design of the Underwater Vehicle
,” B. Tech. thesis, Indian Institute of Technology, Kharagpur.
40.
Montgomery
,
D. C.
,
1999
, “
Experimental Design for Product and Process Design and Development
,”
J. R. Stat. Soc. Ser. D-Statistician
,
48
, pp.
159
173
.10.1111/1467-9884.00179
41.
Myers
,
R. H.
,
Montgomery
,
D. C.
,
Vining
,
G. G.
,
Borror
,
C. M.
, and
Kowalski
,
S. M.
,
2004
, “
Response Surface Methodology: A Retrospective and Literature Survey
,”
J. Quality Technol.
,
36
(
1
), pp.
53
77
.
42.
Myers
,
R.
, and
Montgomery
,
D.
,
1995
,
Response Surface Methodology: Product and Process Optimization Using Designed Experiments
,
Wiley
,
New York
.
43.
Choi
,
H.
,
McDowell
,
D. L.
,
Allen
,
J. K.
,
Rosen
,
D.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design
,”
J. Mech. Des.
,
130
(
3
), p.
031402
.10.1115/1.2829860
44.
Bradley
,
S. R.
, and
Agogino
,
A. M.
,
1994
, “
An Intelligent Real Time Design Methodology for Component Selection: An Approach to Managing Uncertainty
,”
J. Mech. Des.
,
116
, pp.
980
988
.10.1115/1.2919508
45.
Bradley
,
S. R.
,
Agogino
,
A. M.
, and
Wood
,
W. H.
,
1994
, “
Intelligent Engineering Component Catalogs
,”
Artificial Intelligence in Design'
94
,
Kluwer
,
Dordrecht, The Netherlands
, pp.
641
658
.
46.
Howard
,
R.
,
1966
, “
Information Value Theory
,”
IEEE Trans. Syst. Sci. Cybern.
,
SSC-2
(
1
), pp.
779
783
.
47.
Lawrence
,
D. B.
,
1999
,
The Economic Value of Information
,
Springer
,
New York
.
48.
Reich
,
Y.
,
1995
, “
Measuring the Value of Knowledge
,”
Int. J. Hum.-Comput. Stud.
,
42
(
1
), pp.
3
30
.10.1006/ijhc.1995.1002
49.
Montogomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
,
6th ed.
,
Wiley
,
New York
.
50.
Olive
,
D. J.
,
2007
, “
Prediction Intervals for Regression Models
,”
Comput. Stat. Data Anal.
,
51
(
6
), pp.
3115
3122
.10.1016/j.csda.2006.02.006
51.
Maxwell
,
J. C.
,
1873
,
Electricity and Magnetism, Claredon Press
,
Oxford
,
United Kingdom
.
You do not currently have access to this content.