Development of mechatronic products is traditionally carried out by several design experts from different design domains. Performing development of mechatronic products is thus greatly challenging. In order to tackle this, the critical challenges in mechatronics have to be well understood and well supported through applicable methods and tools. This paper aims at identifying the major challenges, by conducting a systematic and thorough survey of the most relevant research work in mechatronic design. Solutions proposed in literature are assessed and illustrated through a case study in order to investigate if the challenges can be handled appropriately by the methods, tools, and mindsets suggested by the mechatronic community. Using a real-world mechatronics case, the paper identifies the areas where further research is required, by showing a clear connection between the actual problems faced during the design task and the nature of the solutions currently available. From the results obtained from this research, one can conclude that although various attempts have been developed to support conceptual design of mechatronics, these attempts are still not sufficient to help in assessing the consequences of selecting between alternative conceptual solutions across multiple domains. We believe that a common language is essential in developing mechatronics, and should be evaluated based on: its capability to represent the desired views effectively, its potential to be understood by engineers from the various domains, and its effect on the efficiency of the development process.

References

References
1.
Tomiyama
,
T.
,
Amelio
,
V. D.
,
Urbanic
,
J.
, and
ElMaraghy
,
W.
,
2007
, “
Complexity of Multi-Disciplinary Design
,”
Ann. CIRP
,
56
(
1
), pp.
185
188
.10.1016/j.cirp.2007.05.044
2.
Torry-Smith
,
J. M.
,
Qamar
,
A.
,
Achiche
,
S.
,
Wikander
,
J.
,
Mortensen
,
N. H.
, and
During
,
C.
,
2011
, “
Mechatronic Design—Still a Considerable Challenge
,” ASME 2011 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 33–44.
3.
Buur
,
J.
,
1990
, “
A Theoretical Approach to Mechatronics Design
,” Ph.D. thesis, Technical University of Denmark, Denmark.
4.
Salminen
,
V.
, and
Verho
,
A. J.
,
1989
, “
Multi-Disciplinary Design Problems in Mechatronics and Some Suggestions to Its Methodical Solution in Conceptual Design Phase
,”
International Conference on Engineering Design (ICED89)
, Vol. 1, pp. 533–554.
5.
Andreasen
,
M. M.
, and
McAloone
,
T. C.
,
2001
, “
‘Joining Three Heads’—Experiences From Mechatronic Projects
,”
12th Design For X Symposium
, pp.
151
156
.
6.
Adamsson
,
N.
,
2004
, “
Model-Based Development of Mechatronic Systems—Reducing the Gap Between Competencies?
,”
Tools Methods Competitive Eng.
,
1
(2), pp.
405
413
.
7.
Buur
,
J.
,
1991
, “
Design Methods in Japan. Research Education and Industrial Application From a European Viewpoint
,”
J. Eng. Des.
,
2
(
2
), pp.
91
103
.10.1080/09544829108901673
8.
Gausemeier
,
J.
,
Frank
,
U.
,
Donoth
,
J.
, and
Kahl
,
S.
,
2009
, “
Specification Technique for the Description of Self-Optimizing Mechatronic Systems
,”
Res. Eng. Des.
,
20
(
4
), pp.
201
223
.10.1007/s00163-008-0058-x
9.
Nagel
,
R. L.
,
Stone
,
R. B.
,
Hutcheson
,
R. S.
,
McAdams
,
D. A.
, and
Donndelinger
,
J. A.
,
2008
, “
Function Design Framework (FDF): Integrated Process and Function Modeling for Complex Systems
,” ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2008, pp. 273–286.
10.
Shah
,
A. A.
,
Kerzhner
,
A. A.
,
Schaefer
,
D.
, and
Paredis
,
C. J. J.
,
2010
, “Multi-View Modeling to Support Embedded Systems Engineering in SysML,” Graph Transformations and Model Driven Engineering—Lecture Notes in Computer Science, Paper No. 5765/2010, pp. 580–601.
11.
Albers
,
A.
,
Braun
,
A.
,
Sadowski
,
E.
,
Wynn
,
D. C.
,
Wyatt
,
D. F.
, and
Clarkson
,
P. J.
,
2011
, “
System Architecture Modeling in a Software Tool Based on the Contact and Channel Approach (C&C-A)
,”
J. Mech. Des.
,
133
(
10
), p.
101006
.10.1115/1.4004971
12.
Cabrera
,
A. A. A.
,
Foeken
,
M. J.
,
Tekin
,
O. A.
,
Woestenenk
,
K.
,
Erden
,
M. S.
,
De Schutter
,
B.
,
van Tooren
,
M. J. L.
,
Babuška
,
R.
,
van Houten
,
F. J. A. M.
, and
Tomiyama
,
T.
,
2010
, “
Towards Automation of Control Software: A Review of Challenges in Mechatronic Design
,”
Mechatronics
,
20
(
8
), pp.
876
886
.10.1016/j.mechatronics.2010.05.003
13.
Fenves
,
S. J.
,
2001
, “
A Core Product Model for Representing Design Information
,” National Institute of Standards and Technology, Gaithersburg, MD, Technical Report No. NISTIR 6736.
14.
Kreimeyer
,
M.
,
Braun
,
S.
,
Gurtler
,
M.
, and
Lindemann
,
U.
,
2008
, “Relating Two Domains via a Third: An Approach to Overcome Ambiguous Attributions Using Multiple Domain Matrices,” ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2008, pp. 297–306.
15.
Danilovic
,
M.
, and
Browning
,
T. R.
,
2007
, “
Managing Complex Product Development Projects With Design Structure Matrices and Domain Mapping Matrices
,”
Int. J. Proj. Manage.
,
25
(
3
), pp.
300
314
.10.1016/j.ijproman.2006.11.003
16.
Wolkl
,
S.
, and
Shea
,
K.
,
2009
, “A Computational Product Model for Conceptual Design Using SysML,” ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2009, pp. 635–645.
17.
Bradley
,
D.
,
2010
, “
Mechatronics—More Questions Than Answers
,”
Mechatronics
,
20
(
8
), pp.
827
841
.10.1016/j.mechatronics.2010.07.011
18.
van Beek
,
T. J.
, and
Tomiyama
,
T.
,
2009
, “Integrating Conventional System Views With Function-Behaviour-State Modelling,” 19th CIRP Conference—Competitive Design, pp. 65–73.
19.
Suh
,
N. P.
,
2001
,
Axiomatic Design: Advances and Applications
,
Oxford University Press
,
New York
.
20.
Nagel
,
R. L.
,
Vucovich
,
J. P.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2008
, “
A Signal Grammar to Guide Functional Modeling of Electromechanical Products
,”
J. Mech. Des.
,
130
(
5
), p.
051101
.10.1115/1.2885185
21.
Hehenberger
,
P.
,
Poltschak
,
F.
,
Zeman
,
K.
, and
Amrhein
,
W.
,
2010
, “
Hierarchical Design Models in the Mechatronic Product Development Process of Synchronous Machines
,”
Mechatronics
,
20
(
8
), pp.
864
875
.10.1016/j.mechatronics.2010.04.003
22.
Braun
,
S. C.
, and
Lindemann
,
U.
,
2007
, “A Multilayer Approach for Early Cost Estimation of Mechatronical Products,” International Conference on Engineering Design (ICED07), pp. 187–188.
23.
Hauser
,
J. R.
, and
Clausing
,
D.
,
1988
, “The House of Quality,” Harvard Business Review, pp. 11.
24.
Bonnema
,
G. M.
,
2011
, “
Insight, Innovation, and the Big Picture in System Design
,”
Syst. Eng.
,
14
(
3
), pp.
223
238
.10.1002/sys.20174
25.
Sage
,
A. P.
, and
Rouse
,
W.
,
2009
,
Handbook of Systems Engineering and Management
,
John Wiley & Sons
,
Oxford
.
26.
Woestenenk
,
K.
,
Tragter
,
H.
,
Bonnema
,
G. M.
,
Cabrera
,
A. A. A.
, and
Tomiyama
,
T.
,
2010
, “Multi Domain Design: Integration and Reuse,” ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2010), pp. 519–528.
27.
Isermann
,
R.
,
2005
,
Mechatronic Systems Fundamentals
,
Springer-Verlag
,
London
.
28.
Association of German Engineers
,
2004
,
VDI 2206, Design Methodology for Mechatronic Systems, VDI Guidelines
,
Beuth Verlag
,
Berlin
.
29.
Borches
,
P. D.
, and
Bonnema
,
G. M.
,
2010
, “
A3 Architecture Overviews—Focussing Architectural Knowledge to Support Evolution of Complex Systems
,”
20th Annual INCOSE Symposium (IS2010)
.
30.
Object Management Group
,
2010
,
OMG Systems Modeling Language Specification V1.2
, http://www.omg.org/spec/SysML/1.2/PDF/
31.
Cabrera
,
A. A. A.
,
Woestenenk
,
K.
, and
Tomiyama
,
T.
,
2011
, “
An Architecture Model to Support Cooperative Design for Mechatronic Products: A Control Design Case
,”
Mechatronics
,
21
(
3
), pp.
534
547
.10.1016/j.mechatronics.2011.01.009
32.
Gausemeier
,
J.
,
Schafer
,
W.
,
Greenyer
,
J.
,
Kahl
,
S.
,
Pook
,
S.
, and
Rieke
,
J.
,
2009
, “Management of Cross Domain Model Consistency During the Development of Advanced Mechatronic Systems,” 17th International Conference on Engineering Design (ICED'09), pp. 1–12.
33.
81346, 2012, ISO/IEC 81346 Standard
, http://81346.com/english/
34.
Modelica Association
,
2010
,
Modelica Language Specification Version 3.2
, http://www.modelica.org/documents/ModelicaSpec32.pdf
35.
Wu
,
Z.
,
Campbell
,
M. I.
, and
Fernandez
,
B. R.
,
2008
, “
Bond Graph Based Automated Modeling for Computer-Aided Design of Dynamic Systems
,”
J. Mech. Des.
,
130
(
4
), p.
041102
.10.1115/1.2885180
36.
Albers
,
A.
, and
Ottnad
,
J.
,
2010
, “
Integrated Structural and Controller Optimization in Dynamic Mechatronic Systems
,”
J. Mech. Des.
,
132
(
4
), p.
041008
.10.1115/1.4001380
37.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2008
,
A Practical Guide to SysML, the Systems Modelling Language
,
Morgan Kaufmann
,
Amsterdam
.
38.
Borches
,
P. D.
, and
Bonnema
,
G. M.
,
2010
, “System Evolution Barriers and How to Overcome Them!,” 8th Conference on Systems Engineering Research (CSER2010).
39.
Phoenix Integration
,
2012
,
ModelCenter
, http://www.phoenix-int.com/software/phx_modelcenter_10.php
40.
Comet Solutions
,
2012
,
Comet Workspace
, http://cometsolutions.com/products/workspace/
41.
Macomber
,
B.
, and
Yang
,
M.
,
2011
, “The Role of Sketch Finish and Style in User Responses to Early Stage Design Concepts,” ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2011, pp. 567–576.
42.
Murugappan
,
S.
, and
Ramani
,
K.
,
2009
, “FEAsy: A Sketch-Based Interface Integrating Structural Analysis in Early Design,” ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2009, pp. 743–752.
43.
Tomiyama
,
T.
,
Kiriyama
,
T.
,
Takeda
,
H.
,
Xue
,
D.
, and
Yoshikawa
,
H.
,
1989
, “
Metamodel: A Key to Intelligent CAD Systems
,”
Res. Eng. Des.
,
1
(
1
), pp.
19
34
.10.1007/BF01580000
44.
Yoshikawa
,
H.
,
Tomiyama
,
T.
,
Kiriyama
,
T.
, and
Umeda
,
Y.
,
1994
, “
An Integrated Modeling Environment Using the Metamodel
,”
Ann. CIRP-Manuf. Technol.
,
43
(
1
), pp.
121
124
.10.1016/S0007-8506(07)62178-7
45.
Cutkosky
,
M. R.
,
Engelmore
,
R. S.
,
Fikes
,
R. E.
,
Gennesereth
,
M. R.
,
Gruber
,
T. R.
,
Mark
,
W. S.
,
Tenenbaum
,
J. M.
, and
Weber
,
J. C.
,
1993
, “
PACT: An Expriement in Integrating Concurrent Engineering Systems
,”
Computer
,
26
(
1
), pp.
28
37
.10.1109/2.179153
46.
Andreasen
,
M. M.
,
1980
, “
Machine Design Methods Based on Systematic Approach
,” Ph.D. thesis, Lund University, Sweden.
47.
Hansen
,
C. T.
, and
Andreasen
,
M. M.
,
2002
, “
Two Approaches to Synthesis Based on the Domain Theory
,”
Engineering Design Synthesis
, Amaresh Chakrabarti (ed)., Springer-Verlag, London.
48.
Mortensen
,
N. H.
,
2000
, “
Design Modeling in a Designer's Workbench
,” Ph.D. thesis, Technical University of Denmark, Denmark.
49.
Kiriyama
,
T.
,
Tomiyama
,
T.
, and
Yoshikawa
,
H.
,
1991
, “
A Model Integration Framework for Cooperative Design
,”
Comput. Aided Cooperative Prod. Dev.
,
492
, pp.
126
139
.10.1007/BFb0014269
50.
Linde Werdelin
,
2012
, http://www.lindewerdelin.com/
You do not currently have access to this content.