Compliant mechanisms with evenly distributed stresses have better load-bearing ability and larger range of motion than mechanisms with compliance and stresses lumped at flexural hinges. In this paper, we present a metric to quantify how uniformly the strain energy of deformation and thus the stresses are distributed throughout the mechanism topology. The resulting metric is used to optimize cross-sections of conceptual compliant topologies leading to designs with maximal stress distribution. This optimization framework is demonstrated for both single-port mechanisms and single-input single-output mechanisms. It is observed that the optimized designs have lower stresses than their nonoptimized counterparts, which implies an ability for single-port mechanisms to store larger strain energy, and single-input single-output mechanisms to perform larger output work before failure.

References

References
1.
Smith
,
S. T.
,
2000
,
Flexure: Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
Amsterdam
.
2.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John-Wiley
,
New York
.
3.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Prentice-Hall, Englewood Cliffs
,
New Jersey
.
4.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
,
1994
, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
31
, pp.
151
179
.10.1081/SME-120020289
5.
Ananthasuresh
,
G. K.
,
1994
, “
A New Design Paradigm in Microelectromechanical Systems and Investigations on Compliant Mechanisms
,” Ph.D. thesis,
University of Michigan, Ann Arbor
,
MI
.
6.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
J. Mech. Des.
,
119
(
2
), pp.
238
245
.10.1115/1.2826242
7.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
, pp
36
49
.10.1007/s001580050084
8.
Sigmund
,
O.
, and
P.
,
M. B.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer-Verlag
,
Berlin
.
9.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2003
, “
A Computational Approach to the Number of Synthesis of Linkages
,”
J. Mech. Des.
,
125
(
1
), pp.
110
118
.10.1115/1.1539513
10.
Canfield
,
S. L.
,
Chlarson
,
D. L.
,
Shibakov
,
A.
,
Richardson
,
J. D.
, and
Saxena
,
A.
,
2007
, “
Multi-Objective Optimization of Compliant Mechanisms Including Failure Theories
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
September
,
Las Vegas, NV
.
11.
Canfield
,
S. L.
,
Shibakov
,
A.
, and
Richardson
,
J. D.
,
2009
, “
Design Space Analysis of Distributed Compliance in Segmented Beam Templates of Compliant Mechanisms
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
September
,
San Diego, CA
.
12.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integrated Circuits and Signal Processing
, pp.
7
15
.
13.
Kim
,
C. J.
,
Moon
,
Y. M.
, and
Kota
,
S.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
J. Mech. Des.
,
130
(
2
), p.
022308
.10.1115/1.2821387
14.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2011
, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
J. Mech. Rob.
,
3
(
1
), p.
011001
.10.1115/1.4002513
15.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y. M.
,
2006
, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
J. Mech. Des.
,
128
(
3
), pp.
542
550
.10.1115/1.2181992
16.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2010
, “
Load-Transmitter Constraint Sets: Part I—An Effective Tool to Visualize Load Flow in Compliant Mechanisms and Structures
,”
Proceedings of 2010 ASME International Design Engineering Technical Conferences and, Computers and Information in Engineering Conferences
, August,
Montreal, CA
.
17.
Hetrick
,
J. A.
, and
Kota
,
S.
,
1999
, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
J. Mech. Des.
,
121
(
2
), pp.
229
234
.10.1115/1.2829448
18.
Michell
,
A. G. M.
,
1904
, “
The Limits of Economy of Material in Frame-Structures
,”
Philosophical Magazine Series
, Vol. 6.
19.
Vogel
,
S.
,
2003
,
Comparative Biomechanics
,
Princeton University Press
,
Princeton, New Jersey
.
20.
Sivanagendra
,
P.
, and
Ananthasuresh
,
G.
,
2009
, “
Size Optimization of a Cantilever Beam Under Deformation-Dependent Loads With Application to Wheat Stalks
,”
Struct. Multidiscip Optim.
,
39
(
3
), pp.
327
336
.10.1007/s00158-008-0342-4
21.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.10.1115/1.2735342
22.
Cappelleri
,
D. J.
,
Krishnan
,
G.
,
Kim
,
C.
,
Kumar
,
V.
, and
Kota
,
S.
,
2010
, “
Toward the Design of a Decoupled, Two-Dimensional, Vision-Based MU N Force Sensor
,”
J. Mech. Rob.
,
2
(
2
), p.
021010
.10.1115/1.4001093
23.
Lu
,
K.-J.
, and
Kota
,
S.
,
2005
, “
An Effective Method of Synthesizing Compliant Adaptive Structures Using Load Path Representation
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
307
317
.10.1177/1045389X05050104
24.
Lu
,
K.-J.
,
2004
, “
Synthesis of Shape-Morphing Compliant Mechanisms
,” Ph.D. thesis,
University of Michigan, Ann Arbor, MI
.
25.
2007
, PaperPro website: www.paperpro.com
26.
Kalapay
,
D.
, and
Kim
,
C.
,
2008
, “
Design of a Compliant Energy Storage Impulse Mechanism for a Desktop Stapler
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, September,
Brooklyn, NY
.
You do not currently have access to this content.