Magnetic resonance imaging (MRI) compatible robots can assist physicians with the insertion of biopsy needles and needle-like therapeutic instruments directly into millimeter-size tumors, using MR images as feedback. However, MRI systems present a challenging environment with high magnetic fields and limited space, making the development of MRI-compatible robots complex. This paper presents an MRI-compatible pneumatic actuation technology consisting of molded polymer structures with embedded air-muscles operated in a binary fashion. Along with its good positioning accuracy, the technology presents advantages of compactness, perfect MRI-compatibility, simplicity and low cost. Here, we specifically report the design and validation of a transperineal prostate cancer manipulator prototype that has 20 embedded air-muscles distributed in four star-like polymer structures. These compliant structures are made of silicone elastomer, using lost-core injection molding. Low motion hysteresis and good precision are achieved by designing molded joints that eliminate sliding surfaces. An effective design method for such embedded polymer air-muscles is proposed, using a manipulator model and four air-muscle design models: geometrical, finite elements, uniaxial analytic, and experimental. Binary control of each air-muscle ensures stability and accuracy with minimized costs and complexity. The prototype is found MRI-compatible with no observable effects on the signal-to-noise ratio and, with appropriate image feedback, is found to reach targets with precision and accuracy under 0.5 mm. The embedded approach reveals to be a key feature since it reduces hysteresis errors by a factor of ≈7 compared to a previous nonembedded version of the manipulator. The successful validation of this binary manipulator opens the door to a new design paradigm for low cost and highly capable pneumatic robots.

References

References
1.
Francis
,
P.
, and
Winfield
,
H. N.
,
2006
, “
Medical Robotics: The Impact on Perioperative Nursing Practice
,”
Urol. Nurs.
,
26
(
2
),
pp.
99
104
, 107–108.
2.
Chinzei
,
K.
, and
Miller
,
K.
,
2001
, “
Towards MRI Guided Surgical Manipulator
,”
Med. Sci. Monit.: Int. Med. J. Exp. Clin. Res.
,
7
(
1
), pp.
153
163
.
3.
Jolesz
,
F.
,
2005
, “
Future Perspectives for Intraoperative MRI
,”
Neurosurg. Clin. N. Am.
,
16
(
1
), pp.
201
213
.10.1016/j.nec.2004.07.011
4.
Hricak
,
H.
,
Choyke
,
P. L.
,
Eberhardt
,
S. C.
,
Leibel
,
S. A.
, and
Scardino
,
P. T.
,
2007
, “
Imaging Prostate Cancer: A Multidisciplinary Perspective
,”
Radiology
,
243
(
1
), pp.
28
53
.10.1148/radiol.2431030580
5.
Carroll
,
P. R.
,
Coakley
,
F. V.
, and
Kurhanewicz
,
J.
,
2006
, “
Magnetic Resonance Imaging and Spectroscopy of Prostate Cancer
,”
Rev. Urol.
,
8
(
Suppl 1
), pp.
S4
S10
.
6.
Gassert
,
R.
,
Yamamoto
,
A.
,
Chapuis
,
D.
,
Dovat
,
L.
,
Bleuler
,
H.
, and
Burdet
,
E.
,
2006
, “
Actuation Methods for Applications in MR Environments
,”
Concepts Magn. Reson., Part B
,
29
(
4
), pp.
191
209
.10.1002/cmr.b.20070
7.
Krieger
,
A.
,
Iordachita
,
I.
,
Song
,
S.
,
Cho
,
N.
,
Guion
,
P.
,
Fichtinger
,
G.
, and
Whitcomb
,
L.
,
2010
, “
Development and Preliminary Evaluation of an Actuated MRI-Compatible Robotic Device for MRI-Guided Prostate Intervention
,”
2010 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
1066
1073
.
8.
Fischer
,
G.
,
Iordachita
,
I.
,
Csoma
,
C.
,
Tokuda
,
J.
,
DiMaio
,
S.
,
Tempany
,
C.
,
Hata
,
N.
, and
Fichtinger
,
G.
,
2008
, “
MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement
,”
IEEE/ASME Trans. Mechatron.
,
13
(
3
), pp.
295
305
.10.1109/TMECH.2008.924044
9.
Fischer
,
G. S.
,
Iordachita
,
I.
,
Csoma
,
C.
,
Tokuda
,
J.
,
Mewes
,
P. W.
,
Tempany
,
C. M.
,
Hata
,
N.
, and
Fichtinger
,
G.
,
2008
, “
Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions
,”
IEEE International Conference on Robotics and Automation (ICRA), Proceedings—IEEE International Conference on Robotics and Automation
,
Institute of Electrical and Electronics Engineers, Inc.
, pp.
2489
2495
.
10.
Hempel
,
E.
,
Fischer
,
H.
,
Gumb
,
L.
,
Hhn
,
T.
,
Krause
,
H.
,
Voges
,
U.
,
Breitwieser
,
H.
,
Gutmann
,
B.
,
Durke
,
J.
,
Bock
,
M.
, and
Melzer
,
A.
,
2003
, “
An MRI-Compatible Surgical Robot for Precise Radiological Interventions
,”
Comput. Aided Surg.
,
8
(
4
), pp.
180
191
.10.3109/10929080309146052
11.
Caldwell
,
D.
,
Tsagarakis
,
N.
,
Medrano-Cerda
,
G.
,
Schofield
,
J.
, and
Brown
,
S.
,
2001
, “
A Pneumatic Muscle Actuator Driven Manipulator for Nuclear Waste Retrieval
,”
Control Eng. Pract.
,
9
(
1
), pp.
23
36
.10.1016/S0967-0661(00)00073-3
12.
Reynolds
,
D. B.
,
Repperger
,
D. W.
,
Phillips
,
C. A.
, and
Bandry
,
G.
,
2003
, “
Modeling the Dynamic Characteristics of Pneumatic Muscle
,”
Ann. Biomed. Eng.
,
31
(
3
), pp.
310
317
.10.1114/1.1554921
13.
Hodgson
,
S.
,
Le
,
M.
,
Tavakoli
,
M.
, and
Pham
,
M.
,
2011
, “
Sliding-Mode Control of Nonlinear Discrete-Input Pneumatic Actuators
,”
IEEE International Conference on Intelligent Robots and Systems
, pp.
738
743
.
14.
Nguyen
,
T.
,
Leavitt
,
J.
,
Jabbari
,
F.
, and
Bobrow
,
J.
,
2007
, “
Accurate Sliding-Mode Control of Pneumatic Systems Using Low-Cost Solenoid Calves
,”
IEEE/ASME Trans. Mechatron.
,
12
(
2
), pp.
216
219
.10.1109/TMECH.2007.892821
15.
Taillant
,
E.
,
Avila-Vilchis
,
J.
,
Allegrini
,
C.
,
Bricault
,
I.
, and
Cinquin
,
P.
,
2004
. “
CT and MR Compatible Light Puncture Robot: Architectural Design and First Experiments
,”
Lect. Notes Comput. Sci.
,
3217
, pp.
145
152
.10.1007/b100270
16.
Stoianovici
,
D.
,
Patriciu
,
A.
,
Petrisor
,
D.
,
Mazilu
,
D.
, and
Kavoussi
,
L.
,
2007
. “
A New Type of Motor: Pneumatic Step Motor
,”
IEEE/ASME Trans. Mechatron.
,
12
(
1
), pp.
98
106
.10.1109/TMECH.2006.886258
17.
Stoianovici
,
D.
,
Song
,
D.
,
Petrisor
,
D.
,
Ursu
,
D.
,
Mazilu
,
D.
,
Muntener
,
M.
,
Schar
,
M.
, and
Patriciu
,
A.
,
2007
, “
MRI Stealth Robot for Prostate Interventions
,”
Minimally Invasive Ther. Allied Technol.
,
16
(
4
), pp.
241
248
.10.1080/13645700701520735
18.
Zaman
,
D. N.
,
Suzuki
,
T.
,
Liao
,
H.
,
Kobayashi
,
E.
,
Jimbo
,
Y.
, and
Sakuma
,
I.
,
2007
, “
Development and Evaluation of a Novel Actuator Using MR Magnetic Field
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
IEEE
, pp.
1184
1189
.
19.
Chirikjian
,
G.
,
1994
, “
A Binary Paradigm for Robotic Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 4 of Proceedings 1994 IEEE International Conference on Robotics and Automation (Cat. No.94CH3375-3)
,
IEEE Comput. Soc. Press
, pp.
3063
3069
.
20.
Lees
,
D.
, and
Chirikjian
,
G.
,
1996
, “
A Combinatorial Approach to Trajectory Planning for Binary Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2749
2754
.
21.
Tadakuma
,
K.
,
DeVita
,
L. M.
,
Plante
,
J. S.
,
Shaoze
,
Y.
, and
Dubowsky
,
S.
,
2008
, “
The Experimental Study of a Precision Parallel Manipulator with Binary Actuation: With Application to MRI Cancer Treatment
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
2503
2508
.
22.
Proulx
,
S.
, and
Plante
,
J.
,
2011
, “
Design and Experimental Assessment of an Elastically Averaged Binary Manipulator Using Pneumatic Air Muscles for Magnetic Resonance Imaging Guided Prostate Interventions
,”
ASME J. Mech. Des.
,
133
(
11
), p.
111011
.10.1115/1.4004983
23.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
, NY.
24.
Proulx
,
S.
,
Chouinard
,
P.
,
Lucking Bigue
,
J.
,
Miron
,
G.
, and
Plante
,
J.
,
2011
. “
Design of a MRI-Compatible Dielectric Elastomer Powered Jet Valve
,” Electroactive Polymer Actuators and Devices (EAPAD), 79762C.
25.
Wickramatunge
,
K.
, and
Leephakpreeda
,
T.
,
2010
, “
Study on Mechanical Behaviors of Pneumatic Artificial Muscle
,”
Int. J. Eng. Sci.
,
48
(
2
), pp.
188
198
.10.1016/j.ijengsci.2009.08.001
26.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2006
, “
A Robust Compliant Grasper via Shape Deposition Manufacturing
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
154
161
.10.1109/TMECH.2006.871090
27.
Cullinan
,
M.
,
DiBiasio
,
C.
,
Howell
,
L.
,
Culpepper
,
M.
, and
Panas
,
R.
,
2007
, “
Modeling of a Clamped-Clamped Carbon Nano-Tube Flexural Element for Use in Nanoelectro-Mechanical Systems
,”
13th National Conference on Mechanisms and Machines
, pp.
105
110
.
28.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
29.
Caldwell
,
D.
,
Medrano-Cerda
,
G.
, and
Goodwin
,
M.
,
1995
, “
Control of Pneumatic Muscle Actuators
,”
IEEE Control Syst.
,
15
(
1
), pp.
40
48
.10.1109/37.341863
30.
Davis
,
S.
,
Tsagarakis
,
N.
,
Canderle
,
J.
, and
Caldwell
,
D. G.
,
2003
, “
Enhanced Modelling and Performance in Braided Pneumatic Muscle Actuators
,”
Int. J. Rob. Res.
,
22
(
3–4
), pp.
213
227
.10.1177/0278364903022003006
31.
Daerden
,
F.
,
Lefeber
,
D.
,
Verrelst
,
B.
, and
Van Ham
,
R.
,
2001
, “
Pleated Pneumatic Artificial Muscles: Compliant Robotic Actuators
,”
Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
4
, pp.
1958
1963
.
32.
Verrelst
,
B.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Lefeber
,
D.
,
Daerden
,
F.
, and
Van Damme
,
M.
,
2006
, “
Second Generation Pleated Pneumatic Artificial Muscle and Its Robotic Applications
,”
Adv. Rob.
,
20
(
7
), pp.
783
805
.10.1163/156855306777681357
33.
Yang
,
W.
, and
Feng
,
W.
,
1970
, “
On Axisymmetrical Deformations of Nonlinear Membranes
,”
Trans. ASME J. Appl. Mech.
,
37
(
4
), pp.
1002
1011
.10.1115/1.3408651
34.
Wissler
,
M.
,
2007
, “
Modeling Dielectric Elastomer Actuators
,” Thesis,
Swiss Federal Institute of Technology in Zurich
, Sc.D. Thesis,
Zurich, Switzerland
.
35.
Bazergui
,
A.
,
Bui-Quoc
,
T.
,
Biron
,
A.
,
McIntyre
,
G.
, and
Laberge
,
C.
,
2002
,
Résistance des matriaux
,
Presses inter Polytechnique
,
Montreal, Canada
.
36.
Uecker
,
M.
,
Zhang
,
S.
,
Voit
,
D.
,
Karaus
,
A.
,
Merboldt
,
K.
, and
Frahm
,
J.
,
2010
, “
Real-Time MRI at a Resolution of 20 ms
,”
NMR Biomed.
,
23
(
8
), pp.
986
994
.10.1002/nbm.1585
You do not currently have access to this content.