This paper presents a unique feature of geometric constraint of adjacent axes of the variable-axis (vA) joint and analyses the effectiveness in the constructed limb, resulting in variation of mobility configuration of two 3SvPSv metamorphic parallel mechanisms. The underlying principle of the metamorphosis of this vA joint is unravelled by investigating the dependence of the corresponding screw system comprising of line vectors, leading to evolution of the vA joint from the source phase Sv to the variable Hooke’s joint phase Uv and the variable revolute-joint phase Rv. The kinematic chain installed with the vA joint forms a reconfigurable limb and is then used to construct two 3SvPSv metamorphic parallel mechanisms proposed in this paper. The phase change of the vA joints incurs the constraint change of the SvPSv limb and subsequently results in the change of mobility configuration of the metamorphic parallel mechanisms. The paper further addresses the geometrical condition for constructing 3SvPSv metamorphic parallel mechanisms following the constraints delivered by the reconfigurable limbs, leading to the analysis of mobility change of the mechanisms induced by the phase change of the limbs.

References

References
1.
Dai
,
J. S.
,
Zoppi
,
M.
, and
Kong
,
X. W.
,
2009
, “
Editorial Preface in Reconfigurable Mechanisms and Robots
,”
Proceeding of the ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2009)
, London, UK.
2.
Ding
,
X. L.
, and
Ynag
,
Y.
,
2010
, “
Reconfiguration Theory of Mechanism From a Traditional Artifact
,”
Trans. ASME J. Mech. Des.
,
132
(
11
), p.
1145401
.10.1115/1.4002692
3.
Dai
,
J. S.
,
Zoppi
,
M.
, and
Kong
,
X. W.
,
2012
, “
Editorial Preface
,”
Advances in Reconfigurable Mechanisms and Robots I
,
Springer
,
London/Heidelberg
, pp.
v
viii
.
4.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
Kluwer
,
Dordrecht, The Netherlands
, pp.
359
368
.
5.
Zeng
,
Q.
,
Fang
,
Y. F.
, and
Ehmann
,
K. F.
,
2011
, “
Design of a Novel 4-DOF Kinematotropic Hybrid Parallel Manipulator
,”
Trans. ASME J. Mech. Des.
,
133
(
12
), p.
121006
.10.1115/1.4005233
6.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
Trans. ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.10.1115/1.2829470
7.
Zhang
,
L. P.
,
Dai
,
J. S.
, and
Wang
,
D. L.
,
2008
, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
Trans. ASME J. Mech. Des.
,
130
(
7
), p.
072303
.10.1115/1.2900719
8.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
,
2006
, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
Trans. ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.10.1115/1.2166854
9.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
Trans. ASME J. Mech. Des.
,
127
(
7
), pp.
837
840
.10.1115/1.1866159
10.
Liu
,
C. H.
, and
Yang
,
T. L.
,
2004
, “
Essence and Characteristics of Metamorphic Mechanisms and Their Metamorphic Ways
,”
Proceedings of the 11th World Congress in Mechanism and Machine Science
, Tianjin, China, pp. 1285–1288.
11.
Zhang
,
L. P.
, and
Dai
,
J. S.
,
2008
, “
Reconfiguration of Spatial Metamorphic Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011012
.
12.
Gogu
,
G.
,
2009
, “
Branching Singularities in Kinematotropic Parallel Mechanisms
,”
Proceedings of the 5th International Workshop on Computational Kinematics
, Duisburg, Germany.
13.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P. L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
Trans. ASME J. Mech. Des.
,
129
(
7
), pp.
595
-
601
.10.1115/1.2717228
14.
Kumar
,
T. S.
,
Nagarajan
,
T.
, and
Srinivasa
,
Y. G.
,
2009
, “
Characterization of Reconfigurable Stewart Platform for Contour Generation
,”
Rob. Comput.-Integr. Manuf.
,
24
(
4–5
), pp.
721
731
.10.1016/j.rcim.2008.06.001
15.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
Trans. ASME J. Mech. Rob.
,
1
, p.
041007
.10.1115/1.3211023
16.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1864
1876
.10.1016/j.mechmachtheory.2010.08.004
17.
Zhang
,
K. T
,
Dai
,
J. S.
, and
Fang
,
Y. F.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
Trans. ASME J. Mech. Des.
,
132
(
12
), p.
121001
.10.1115/1.4002691
18.
Gopalakrishnan
,
V.
,
Fedewa
,
D.
,
Mehrabi
,
M. G.
,
Kota
,
S.
, and
Orlandea
,
N.
,
2002
, “
Parallel Structures and Their Applications in Reconfigurable Machining Systems
,”
J. Manuf. Sci. Eng.
,
124
(
2
), pp.
483
485
.10.1115/1.1459468
19.
Dai
,
J. S.
, and
Caldwell
,
D. G
,
2010
, “
Origami-Based Robotic Paper-and-Board Packaging for Food Industry
,”
Trends Food Sci. Technol.
,
21
(
3
), pp.
153
157
.10.1016/j.tifs.2009.10.007
20.
Tsai
,
L. W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley
,
New York
.
21.
Dai
,
J. S.
, and
Rees
,
J. J.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.10.1016/S0094-114X(01)00004-0
22.
Fang
,
Y. F.
, and
Tsai
,
L. W.
,
2004
, “
Enumeration of a Class of Overconstrained Mechanisms Using the Theory of Reciprocal Screws
,”
Mech. Mach. Theory
,
39
(
11
), pp.
1175
1187
.10.1016/j.mechmachtheory.2004.06.003
23.
Hunt
,
K. H.
,
1990
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
24.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
New York
,
Springer-Verlag
.
25.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
Trans. ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.10.1115/1.4001783
26.
Rodriguez-Leal
,
E.
, and
Dai
,
J. S.
,
2007
, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Sept. 4–7, Las Vegas, Nevada, Paper No. DETC2007-35516.
27.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
Trans. ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.10.1115/1.1901708
28.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
,
23
(
6
), pp.
1021
1039
.10.1016/j.euromechsol.2004.08.006
29.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots, Part 1-Methodology
,
Springer
,
The Netherlands
.
30.
Cheng
,
H.
,
Liu
,
G. F.
,
Yiu
,
Y. K.
,
Xiong
,
Z. H.
, and
Li
,
Z. X.
,
2001
, “
Advantages and Dynamics of Parallel Manipulators With Redundant Actuation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Maui, Hawaii, pp. 171–176.
31.
Saglia
,
J. A.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2008
, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism that Eliminates Singularity and Improves Dexterity
,”
Trans. ASME J. Mech. Des.
,
130
(
12
), p.
124501
.10.1115/1.2988472
32.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G
,
2009
, “
Inverse-Kinematics-Based Control of a Redundantly Actuated Platform for Rehabilitation
,”
J. Syst. Control Eng., Proc. IMechE, Part I
,
223
(
1
), pp.
53
70
.10.1243/09596518JSCE622
33.
Dai
,
J. S.
,
2012
, “
Finite Displacement Screw Operators With Embedded Chasles’ Motion
,”
Trans. ASME. J. Mech. Rob.
,
4
(
4
), p.
041002
.10.1115/1.4006951
You do not currently have access to this content.