A novel air bearing workbench used in rotary ultrasonic drilling of advanced ceramics was designed to constantly and sensitively control the cutting force. Compared with traditional feed systems, the novel air bearing workbench features an aerostatic guide and a pneumatic actuator, so that it only overcomes the air damping when the cutting force is balanced. Thus, it can sensitively and constantly control the cutting force for rotary ultrasonic drilling of advanced ceramics. The aerostatic guide, which determines the eccentric bearing capacity and stiffness of the workbench, is the most important part. The forces applied on the aerostatic guide faces were analyzed to calculate the bearing capacity and stiffness of the workbench using varying gas film thicknesses with finite element method (FEM). Based on the result of the analysis, the best gas film thickness of the aerostatic guide was designed to be 30 μm. The real eccentric bearing capacity and stiffness of the workbench were measured. The error between experimental results and the FEM results was within 12%.

References

References
1.
Bortz
,
S.
, 1980, “
Reliability of Ceramics for Heat Engine Applications
,” National Academy of Sciences, Washington, D.C., Report No. NMAB-357.
2.
Barta
,
J.
, 1982, “
Preparation and Properties of Silicon Nitride for Radome Applications
,”
Proceedings of the 16th Symposium on Electromagnetic Windows, Georgia Institute of Technology
, Atlanta, pp.
87
92
.
3.
Barta
,
J.
, and
Manela
,
M.
, 1985, “
Si3N4 and Si2N2O for High Performance Radome
,”
Mater. Sci. Eng.
,
71
, pp.
265
272
.
4.
Helms
,
H. E.
, and
Haley
,
P. J.
, 1988, “
Emerging Ceramic Components for Automotive Gas Turbines
,”
Proceedings of third International Symposium on Ceramic Materials and Components for Engines
, Las Vegas, NV, Nov. 27–30.
5.
Honjo
,
K.
, and
Hashimoto
,
R.
, 1993, “
Current Status of 300 kW Industrial Ceramic Gas Turbine R&D in Japan
,”
ASME J. Eng. Gas Turbines Power
,
115
(
1
), pp.
51
57
.
6.
Brice
,
J. C.
, 1985, “
Crystals for Quartz Resonators
,”
Rev. Mod. Phys.
,
57
, pp.
105
146
.
7.
Ballato
,
A.
, and
Gualtieri
,
J. C.
, 1994, “
Advances in High-Q Piezoelectric Resonator Materials and Devices
,”
IEEE Trans. Ultrason. Ferroelectrics Freq. Control
,
41
(
6
), pp.
834
844
.
8.
Davis
,
J. R.
, 2003,
Handbook of Materials for Medical Devices
,
ASM International
.
9.
Ishikawa
,
K.
,
Suwabe
,
H.
,
Nishide
,
T.
, and
Uneda
,
M.
, 1998, “
A Study on Combined Vibration Drilling by Ultrasonic and Low-Frequency Vibrations for Hard and Brittle Materials
,”
Precis. Eng.
,
22
, pp.
196
205
.
10.
Jahanmir
,
S.
,
Ives
,
L. K.
,
Ruff
,
A. W.
, and
Peterson
,
M. B.
, 1992, “
Ceramic Machining: Assessment of Current Practice and Research Needs in the United States
,” NIST Special Publication No. 834, p.
102
.
11.
Pei
,
Z. J.
,
Ferreira
,
P. M.
,
Kapoor
,
S. G.
, and
Haselkorn
,
M.
, 1995, “
Rotary Ultrasonic Machining for Face Milling of Ceramics
,”
Int. J. Mach. Tools Manuf.
,
35
(
7
), pp.
1033
1046
.
12.
Pei
,
Z. J.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1995, “
Plastic Flow in Rotary Ultrasonic Machining of Ceramics
,”
J. Mater. Process. Technol.
,
48
, pp.
771
777
.
13.
Pei
,
Z. J.
,
Prabhakar
,
D.
,
Ferreira
,
P. M.
, and
Haselkorn
,
M.
, 1994, “
Rotary Ultrasonic Drilling and Milling of Ceramics
,”
The Design for Manufacturability and Manufacture of Ceramic Components Symposium, American ceramic society 96th annual meeting
, Apr. 24–27, Indianapolis, IN.
14.
Pei
,
Z. J.
, and
Ferreira
,
P. M.
, 1998, “
Modeling of Ductile-Mode Material Removal in Rotary Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
1399
1418
.
15.
Pei
,
Z. J.
, and
Ferreira
,
P. M.
, 1999, “
An Experimental Investigation of Rotary Ultrasonic Face Milling
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
1327
1344
.
16.
Mult
,
H. C.
,
Spur
,
G.
, and
Ho11
,
S. E.
, 1996, “
Ultrasonic Assisted Grinding of Ceramics
,”
J. Mater. Process. Technol.
,
62
, pp.
287
293
.
17.
Thoe
,
T. B.
,
Aspinwall
,
D. K.
, and
Wise
,
M. L. H.
, 1998, “
Review on Ultrasonic Machining
,”
Int. J. Mach. Tools Manuf.
,
38
(
4
) pp.
239
255
.
18.
Prabhakar
,
D.
, 1992, “
Machining Advanced Ceramic Materials Using Rotary Ultrasonic Machining Process
,” M.S. thesis, University of Illinois at Urbana-Champaign, IL.
19.
Stinton
,
D. P.
, 1988, ORNL/TM-Report No. 10791, “Assessment of the State of the Art in Machining and Surface Preparation of Ceramics,” Oak Ridge National Laboratory, Tennessee.
20.
Kennedy
,
D. C.
, and
Grieve
,
R. J.
, 1975, “
Ultrasonic Machining-A Review
,”
Prod. Eng.
,
54
(
9
) pp.
481
486
.
21.
Egashira
,
K.
, and
Masuzawa
,
T.
, 1999, “
Microultrasonic Machining by the Application of Workpiece Vibration
,”
Ann. CIRP
,
48
, pp.
131
134
.
22.
McGeough
,
J. A.
, 1988,
Advanced Methods of Machining
,
Chapman and Hall
,
New York
, pp.
170
198
.
23.
Nishimura
,
G.
, 1954, “
Ultrasonic Machining-Part I.
,”
J. Fac. Eng., Univ. Tokyo
,
24
(
3
), pp.
65
100
.
24.
Neppiras
,
E. A.
, 1956, “
Report on Ultrasonic Machining
,”
Metalworking. Prod.
,
100
, pp.
1283
1604
.
25.
Adithan
,
M.
, 1976, “
Production Accuracy of Holes in Ultrasonic Drilling
,”
Wear
,
40
(
3
), pp.
309
318
.
26.
Dang
,
G. M.
, 1990,
Gas Lubricated Technology
,
Southeast University Press
,
Nanjing, China
(in Chinese).
27.
Wang
,
Y. F.
, 1999,
Gas Lubricated Theory and Design Manual of Gas Bearings
,
Machinery Industry Press
,
Beijing, China
(in Chinese).
28.
Schiffmann
,
J.
, and
Favrat
,
D.
, 2010, “
Integrated Design and Optimization of Gas Bearing Supported Rotors
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051007
.
29.
Hang
,
Z. Z.
,
Wang
,
J.
, and
Xiang
,
J. H.
, 2004,
Examples and Applications of Simulation Fluid
,
Beijing Institute of Technology Press
,
Beijing, China
(in Chinese).
30.
Liu
,
D.
,
Liu
,
Y. H.
, and
Chen
,
S. J.
, 1990,
Aerostatic Lubrication
,
Harbin Institute of Technology Press
,
Harbin, China
(in Chinese).
You do not currently have access to this content.