In many engineering applications, the probability distributions of some random variables are truncated; these truncated distributions are resulted from restricting the domain of other probability distributions. If the first order reliability method (FORM) is directly used, the truncated random variables will be transformed into unbounded standard normal distributions. This treatment may result in large errors in reliability analysis. In this work, we modify FORM so that the truncated random variables are transformed into truncated standard normal variables. After the first order approximation and variable transformation, saddlepoint approximation is then used to estimate the reliability. Without increasing the computational cost, the proposed method is generally more accurate than the original FORM for problems with truncated random variables.

References

References
1.
Pearn
,
W. L.
,
Hung
,
H. N.
,
Peng
,
N. F.
, and
Huang
,
C. Y.
, 2007, “
Testing Process Precision for Truncated Normal Distributions
,”
Microelectron. Reliab.
,
47
(
12
), pp.
2275
2281
.
2.
Li
,
M. H. C.
, 2004, “
Optimal Target Selection for Unbalanced Tolerance Design
,”
Int. J. Adv. Manuf. Technol.
,
23
(
9–10
), pp.
743
749
.
3.
Pearn
,
W. L.
,
Lin
,
P. C.
,
Chang
,
Y. C.
, and
Wu
,
C. W.
, 2006, “
Quality Yield Measure for Processes With Asymmetric Tolerances
,”
IIE Trans.
,
38
(
8
), pp.
619
633
.
4.
Karamanis
,
D.
, 2011, “
Management of Moderate Wind Energy Coastal Resources
,”
Energy Convers. Manage.
,
52
(
7
), pp.
2623
2628
.
5.
Xie
,
K.
, and
Billinton
,
R.
, 2011, “
Energy and Reliability Benefits of Wind Energy Conversion Systems
,”
Renewable Energy
,
36
(
7
), pp.
1983
1988
.
6.
Anyi
,
M.
, and
Kirke
,
B.
, 2010, “
Evaluation of Small Axial Flow Hydrokinetic Turbines for Remote Communities
,”
Energy Sustainable Dev.
,
14
(
2
), pp.
110
116
.
7.
Agarwal
,
P.
, and
Manuel
,
L.
, 2009, “
Simulation of Offshore Wind Turbine Response for Long-Term Extreme Load Prediction
,”
Eng. Struct.
,
31
(
10
), pp.
2236
2246
.
8.
Ronold
,
K. O.
, and
Larsen
,
G. C.
, 2000, “
Reliability-Based Design of Wind-Turbine Rotor Blades Against Failure in Ultimate Loading
,”
Eng. Struct.
,
22
(
6
), pp.
565
574
.
9.
Carpinteri
,
A.
,
Ferro
,
G.
, and
Invernizzi
,
S.
, 1997, “
The Nominal Tensile Strength of Disordered Materials: A Statistical Fracture Mechanics Approach
,”
Eng. Fract. Mech.
,
58
(
5–6
), pp.
421
435
.
10.
Sia
,
A. H. I.
, and
Dixon
,
N.
, 2007, “
Distribution and Variability of Interface Shear Strength and Derived Parameters
,”
Geotextiles and Geomembranes
,
25
(
3
), pp.
139
154
.
11.
Deperrois
,
A.
,
Bignonnet
,
A.
, and
Merrien
,
P.
, “
Probabilistic Design Methods for Multiaxial High-Cycle Fatigue
,” 1996,
Multiaxial Fatigue and Design: Papers Presented at the Fourth International Conference on Biaxial/Multiaxial Fatigue
,
A.
Pineau
,
A
,
Cailletaud
, and
T. C.
Lindley
, eds.,
Saint-Germainen Laye, France, Mechanical Engineering Publications
,
London
, p.
445
460
.
12.
Verrill
,
S.
, and
Kretschmann
,
D. E.
, 2009, “
Material Variability and Repetitive Member Factors for the Allowable Properties of Engineered Wood Products
,”
J. Test. Eval.
,
37
(
6
), pp.
607
615
.
13.
Beauval
,
C.
, and
Scotti
,
O.
, 2004, “
Quantifying Sensitivities of Psha for France to Earthquake Catalog Uncertainties, Truncation of Ground-Motion Variability, and Magnitude Limits
,”
Bull. Seismol. Soc. Am.
,
94
(
5
), pp.
1579
1594
.
14.
Beauval
,
C.
,
Hainzl
,
S.
, and
Scherbaum
,
F.
, 2006, “
Probabilistic Seismic Hazard Estimation in Low-Seismicity Regions Considering Non-Poissonian Seismic Occurrence
,”
Geophys. J. Int.
,
164
(
3
), pp.
543
550
.
15.
Beauval
,
C.
,
Honoré
,
L.
, and
Courboulex
,
F.
, 2009, “
Ground-Motion Variability and Implementation of a Probabilistic-Deterministic Hazard Method
,”
Bull. Seismol. Soc. Am.
,
99
(
5
), pp.
2992
3002
.
16.
Du
,
X.
, 2008, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
J. Mech. Des.
,
130
(
9
), pp.
091401
091410
.
17.
Zhao
,
Y.-G.
, and
Ono
,
T.
, 1999, “
General Procedure for First/Second-Order Reliability Method (Form/Sorm)
,”
Struct. Safety
,
21
(
2
), pp.
95
112
.
18.
Guo
,
J.
, and
Du
,
X.
, 2010, “
Reliability Analysis for Multidisciplinary Systems With Random and Interval Variables
,”
AIAA J.
,
48
(
1
), pp.
82
91
.
19.
Awad
,
M.
,
Singh
,
N.
, and
Sudjianto
,
A.
, 2006, “
Mpp Search Method Using Limited Radial Importance Sampling
,”
Int. J. Prod. Dev.
,
3
(
3–4
), pp.
305
318
.
20.
Du
,
X.
, and
Sudjianto
,
A.
, 2003, “
Reliability-Based Design with the Mixture of Random and Interval Variables
,”
J. Mech. Des.
,
127
(
6
), pp.
1068
1077
.
21.
Huang
,
H. Z.
,
Yu
,
H.
,
Zhang
,
X.
,
Zeng
,
S.
, and
Wang
,
Z.
, 2010, “
Collaborative Optimization with Inverse Reliability for Multidisciplinary Systems Uncertainty Analysis
,”
Eng. Optimiz.
,
42
(
8
), pp.
763
773
.
22.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
, 2008, “
Inverse Analysis Method Using Mpp-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
14
27
.
23.
Lee
,
I.
,
Choi
,
K. K.
, and
Gorsich
,
D.
, 2010, “
System Reliability-Based Design Optimization Using the Mpp-Based Dimension Reduction Method
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
823
839
.
24.
Zhang
,
J.
, and
Du
,
X.
, 2010, “
A Second-Order Reliability Method With First-Order Efficiency
,”
Trans. ASME, J. Mech. Des.
,
132
(
10
), pp.
101006
101014
.
25.
Melchers
,
R. E.
,
Ahammed
,
M.
, and
Middleton
,
C.
, 2003, “
Form for Discontinuous and Truncated Probability Density Functions
,”
Struct. Safety
,
25
(
3
), pp.
305
313
.
26.
Millwater
,
H.
, and
Feng
,
Y.
, 2011, “
Probabilistic Sensitivity Analysis With Respect to Bounds of Truncated Distributions
,”
Trans. ASME J. Mech. Des.
133
(
6
), pp.
061001
091011
.
27.
Zhang
,
T.
, and
Xie
,
M.
, 2011, “
On the Upper Truncated Weibull Distribution and Its Reliability Implications
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp.
194
200
.
28.
Raschke
,
M.
, 2011, “
Inference for the Truncated Exponential Distribution
,”
Stochastic Environmen. Res. Risk Assess.
, pp.
1
12
.
29.
Griffin
,
D. W. K.
, 2002, “
Aircraft Structural Design Geared for High Reliance on Analysis for Acceptance
,”
Paper presented at the RTO A VT Symposium on “Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation held in
Paris, France, April 22–25, Report No. RTO-MP-089, pp.
25.1
25.19
.
30.
Butler
,
R. W.
, and
Wood
,
A. T. A.
, 2004, “
Saddlepoint Approximation for Moment Generating Functions of Truncated Random Variables
,”
Ann. Stat.
,
32
(
6
), pp.
2712
2730
.
31.
Emancipator
,
K.
, and
Kroll
,
M. H.
, 1993, “
A Quantitative Measure of Nonlinearity
,”
Clin. Chem.
,
39
(
5
), pp.
766
772
.
32.
Butler
,
R. W.
, 2007,
Saddlepoint Approximations with Applications, Cambridge Series in Statistical and Probabilistic Mathematics
,
Cambridge University
,
Cambridge
.
33.
Butler
,
R. W.
,
Sutton
,
R. K.
,
Booth
,
J. G.
, and
Strickland
,
P. O.
, 2008, “
Simulation-Assisted Saddlepoint Approximation
,”
J. Statist. Comput. Simul.
,
78
(
8
), pp.
731
745
.
34.
Daniels
,
H.
, 1954, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
,
25
(
4
), pp.
631
650
.
35.
Du
,
X.
, 2010, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
,
42
(
2
), pp.
193
208
.
36.
Du
,
X.
, and
Sudjianto
,
A.
, 2004, “
A Saddlepoint Approximation Method for Uncertainty Analysis
,”
ASME 2004 International Design Engineering Technical Conferences, ASME
,
Salt Lake City
,
UT
, Vol.
1
, pp.
445
452
.
37.
Jensen
,
J. L.
, 1995,
Saddlepoint Approximations, Oxford Statistical Science Series
,
Clarendon
,
Oxford
, Vol.
16
.
38.
Du
,
X.
, and
Sudjianto
,
A.
, 2004, “
First-Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.
39.
Huang
,
B.
, and
Du
,
X.
, 2006, “Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations,”
Trans. ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
.
40.
Huang
,
B.
, and
Du
,
X.
, 2008, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
325
336
.
41.
Renshaw
,
E.
, 2000, “
Applying the Saddlepoint Approximation to Bivariate Stochastic Processes
,”
Math. Biosci.
,
168
(
1
), pp.
57
75
.
42.
Lugannani
,
R.
, and
Rice
,
S. O.
, 1980, “
Saddle Point Approximation for the Distribution of the Sum of Independent Random Variables
,”
Ann. Appl. Probab.
,
12
(
2
), pp.
475
490
.
You do not currently have access to this content.