Engineering idea generation is a crucial part of new product development, and physical modeling is a widely used tool. Despite the physical models’ popularity in the idea generation process, little is known about their effects on design cognition. The existing literature provides contradicting guidelines about their use in the design process. Product design firms call for the frequent use of physical models, but some studies suggest that physical models induce design fixation. The psychological literature indicates that physical representations, by supporting designers’ mental models of physical phenomena, might lead to more feasible designs. The advantages and disadvantages of physical models as idea generation tools need to be clarified to help designers decide when and where to implement them. Based on prior studies and anecdotal evidence, two hypotheses are tested: (1) physical models supplement designer’s mental models and (2) physical models induce design fixation. Two between-subject idea generation experiments with novice designers are conducted to evaluate these hypotheses. In the first pilot experiment, the participants generate ideas in three conditions: sketching only, building, and building and testing. This study is followed by a second experiment, in which a new condition called constrained sketching is added. In each condition, participants use the representation implied by the name of the condition. The percentage of ideas satisfying all design requirements indicates the physical models’ effect on the designers’ mental models. Novelty and variety are used as metrics for design fixation. The percentage of functional ideas quantified shows significant variation across the sketching and building conditions, whereas novelty and variety show no differences. These results support the argument that physical models supplement novice designer’s mental models. No evidence of fixation is observed, which contradicts the results of the prior observational studies. Hypothesized reasons for the apparently contradictory results are also presented.

References

References
1.
Fish
,
J.
, 2004, “
Cognitive Catalysis: Sketches for a Time-Lagged Brain
,” in
Design Representation
,
G.
Goldschmidt
,
et al.
. ed.,
Springer
,
UK
.
2.
Goldschmidt
,
G.
, and
Smolkov
,
M.
, 2006, “
Variances in the Impact of Visual Stimuli on Design Problem Solving Performance
,”
Des. Stud.
,
27
(
5
), pp.
549
569
.
3.
Römer
,
A.
,
Pache
,
M.
,
Weißhahn
,
G.
,
Lindemann
,
U.
, and
Hacker
,
W.
, 2001, “
Effort-Saving Product Representations in Design–Results of a Questionnaire Survey
,”
Des. Stud.
,
22
(
6
), pp.
473
491
.
4.
Mckim
,
R. H.
, 1972,
Experiences in Visual Thinking
,
Brooks/Cole Publishing Company
,
Belmont, CA
.
5.
Lidwell
,
W.
,
Holden
,
K.
, and
Butler
,
J.
, 2003,
Universal Principles of Design
,
Rockport Publishers
, Gloucester, MA.
6.
Otto
,
K. N.
, and
Wood
,
K. L.
, 2001,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
NY
.
7.
NASA, “
Common Lunar Lander Detailed Design Study
,” 1993, Technical Report No. JSC-26094, Houston, TX.
8.
Kelley
,
T.
, 2001, “
Prototyping is the Shorthand of Innovation
,”
Design Management J.
,
12
(
3
), pp.
35
42
.
9.
Ward
,
A.
,
Liker
,
J.
,
Cristiano
,
J.
, and
Sobek
,
D.
, 1995, “
The Second Toyota Paradox: How Delaying Decisions Can Make Better Cars Faster
,”
Sloan Management Rev.
,
36
, pp.
43
43
.
10.
Gentner
,
D.
, and
Stevens
,
A.
, 1983,
Mental Models
,
Lawrence Erlbaum
,
NJ
.
11.
Forbus
,
K.
, 1984, “
Qualitative Process Theory
,”
Artif. Intell.
,
24
pp.
85
168
.
12.
Kempton
,
W.
, 1986, “
Two Theories of Home Heat Control
,”
Cogn. Sci.
,
10
(
1
), pp.
75
90
.
13.
Hutchins
,
E.
, and
Lintern
,
G.
, 1996,
Cognition in the Wild
,
MIT Press
Cambridge MA
.
14.
Goldschmidt
,
G.
, 2007, “
To See Eye to Eye: The Role of Visual Representations in Building Shared Mental Models in Design Teams
,”
CoDesign
,
3
(
1
), pp.
43
50
.
15.
Jansson
,
D.
, and
Smith
,
S.
, 1991, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
.
16.
Chrysikou
,
E.
, and
Weisberg
,
R.
, 2005, “
Following the Wrong Footsteps: Fixation Effects of Pictorial Examples in a Design Problem-Solving Task
,”
J. Exp. Psychol. Learn. Mem. Cogn.
,
31
(
5
), pp.
1134
.
17.
Marsh
,
R.
,
Landau
,
J.
, and
Hicks
,
J.
, 1996, “
How Examples May (and May Not) Constrain Creativity
,”
Mem. Cognit.
,
24
, pp.
669
680
.
18.
Smith
,
S.
,
Ward
,
T.
, and
Schumacher
,
J.
, 1993, “
Constraining Effects of Examples in a Creative Generation Task
,”
Mem. Cognit.
,
21
, pp.
837
837
.
19.
Purcell
,
A. T.
, and
Gero
,
J. S.
, 1996, “
Design and Other Types of Fixation
,”
Des. Stud.
,
17
(
4
), pp.
363
383
.
20.
Collins
,
A. M.
, and
Loftus
,
E. F.
, 1975, “
A Spreading-Activation Theory of Semantic Processing
,”
Psychol. Rev.
,
82
(
6
), pp.
407
428
.
21.
Matlin
,
M. W.
2005,
Cognition
,
Wiley
,
NJ
.
22.
Anderson
,
J. R.
, 1983, “
A Spreading Activation Theory of Memory
,”
J. Verbal Learn. Verbal Beh.
,
22
(
3
), pp.
261
295
.
23.
Maier
,
N.
, 1931, “
Reasoning in Humans: Ii. The Solution of a Problem and Its Appearance in Consciousness
,”
J. Comp. Psychol.
,
12
(
2
), pp.
181
194
.
24.
Luchins
,
A.
, and
Luchins
,
E.
, 1959,
Rigidity of Behavior: A Variational Approach to the Effect of Einstellung
,
University of Oregon Books
,
OR
.
25.
Andreasen
,
M. M.
, and
Hein
,
L.
, 1987,
Integrated Product Development
,
IFS (Publications)
,
UK
.
26.
Bucciarelli
,
L. L.
, 1994,
Designing Engineers
,
MIT Press
,
London
.
27.
Kiriyama
,
T.
, and
Yamamoto
,
T.
, 1998, “
Strategic Knowledge Acquisition: A Case Study of Learning through Prototyping
,”
Knowledge-Based Systems
,
11
(
7–8
), pp.
399
404
.
28.
Lemons
,
G.
,
Carberry
,
A.
,
Swan
,
C.
,
Jarvin
,
L.
, and
Rogers
,
C.
, 2010, “
The Benefits of Model Building in Teaching Engineering Design
,”
Des. Stud.
,
31
(
3
), pp.
288
309
.
29.
Ramduny-Ellis
,
D.
,
Hare
,
J.
,
Dix
,
A.
, and
Gill
,
S.
, 2008, “
Exploring Physicality in the Design Process
,”
Proceedings of Design Research Society Conference
, Sheffield Hallam University, Sheffield, UK.
30.
Horton
,
G. I.
, and
Radcliffe
,
D. F.
, 1995, “
Nature of Rapid Proof-of-Concept Prototyping
,”
J. Eng. Des.
,
6
(
1
), pp.
3
16
.
31.
Acuna
,
A.
, and
Sosa
,
R.
, 2010, “
The Complementary Role of Representations in Design Creativity: Sketches and Models
,”
Proceedings of Design Creativity
,
Springer
,
Japan
.
32.
Dow
,
S. P.
, and
Klemmer
,
S. R.
, 2011, “
The Efficacy of Prototyping Under Time Constraints
,” in
Design Thinking: Understand-Improve-Apply
,
C.
Meinel
,
et al.
, ed.,
Springer
Berlin, Germany
.
33.
Yang
,
M. C.
, 2005, “
A Study of Prototypes, Design Activity and Design Outcome
,”
Des. Stud.
,
26
(
6
), pp.
649
669
.
34.
Smith
,
R. P.
, and
Leong
,
A.
, 1998, “
An Observational Study of Design Team Process: A Comparison of Student and Professional Engineers
,”
ASME Trans. J. Mech. Des.
,
120
, pp.
636
642
.
35.
Youmans
,
R. J.
, 2011, “
The Effects of Physical Prototyping and Group Work on the Reduction of Design Fixation
,”
Des. Stud.
,
32
(
2
), pp.
115
138
.
36.
Star
,
S.
, 1990, “
The Structure of Ill-Structured Solutions: Boundary Objects and Heterogeneous Distributed Problem Solving
,”
Proceedings of Morgan Kaufmann Publishers Inc
.
37.
Henderson
,
K.
, 1991, “
Flexible Sketches and Inflexible Data Bases: Visual Communication, Conscription Devices, and Boundary Objects in Design Engineering
,”
Sci. Technol. Human Values
,
16
(
4
), pp.
448
.
38.
Carlile
,
P.
, 2002, “
A Pragmatic View of Knowledge and Boundaries: Boundary Objects in New Product Development
,”
Org. Sci.
,
13
(
4
), pp.
442
455
.
39.
Baxter
,
M.
, 1996,
Product Design: Practical Methods for the Systematic Development of New Products
,
Chapman & Hall
,
London
.
40.
Buur
,
J.
, and
Andreasen
,
M. M.
, 1989, “
Design Models in Mechatronic Product Development
,”
Des. Stud.
,
10
(
3
), pp.
155
162
.
41.
Vidal
,
R.
,
Mulet
,
E.
, and
Gómez-Senent
,
E.
, 2004, “
Effectiveness of the Means of Expression in Creative Problem-Solving in Design Groups
,”
J. Eng. Des.
,
15
(
3
), pp.
285
298
.
42.
Christensen
,
B.
, and
Schunn
,
C.
, 2005, “
The Relationship of Analogical Distance to Analogical Function and Pre-Inventive Structure: The Case of Engineering Design
,”
Creative Cognition: Analogy and Incubation
,
35
(
1
), pp.
29
38
.
43.
Petroski
,
H.
, 1994,
The Evolution of Useful Things
,
Vintage
,
New York
.
44.
Shah
,
J. J.
,
Smith
,
S. M.
, and
Vargas-Hernandez
,
N.
, 2003, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
45.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
, 2009, “
Enhancing Student Innovation: Physical Models in the Idea Generation Process
,”
ASEE/IEEE Frontiers in Education Conference
,
San Antonio
,
TX
.
46.
Nelson
,
B. A.
,
Wilson
,
J. O.
,
Rosen
,
D.
, and
Yen
,
J.
, 2009, “
Refined Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
30
(
6
), pp.
737
743
.
47.
Tinsley
,
H.
, and
Weiss
,
D.
, 2000, “
Inter-Rater Reliability and Agreement
,”
Handbook of Applied Multivariate Statistics and Mathematical Modeling
,
Academic Press
,
San Diego, CA
pp.
95
124
.
48.
Linsey
,
J.
,
Green
,
M.
,
Murphy
,
J.
,
Wood
,
K.
,
Austin
,
T.
, and
Markman
,
A.
, 2005, “
Collaborating to Success: An Experimental Study of Group Idea Generation Techniques
,”
ASME Design Theory and Methodology Conference
,
Long Beach
,
CA
.
49.
Shah
,
J. J.
,
Kulkarni
,
S. V.
, and
Vargas-Hernandez
,
N.
, 2000, “
Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments
,”
J. Mech. Des.
,
122
(
4
), pp.
377
384
.
50.
Linsey
,
J.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
, 2011, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), pp.
031008
-1–031008-
15
.
51.
Clark-Carter
,
D.
, 1997,
Doing Quantitative Psychological Research: From Design to Report
,
Psychology Press
,
UK
.
52.
Howell
,
D. C.
, 2007, “
Resampling Statistics: Randomization and the Bootstrap
,” March 2009, http://www.uvm.edu/∼dhowell/StatPages/Resampling/Resampling.htmlhttp://www.uvm.edu/∼dhowell/StatPages/Resampling/Resampling.html
53.
Howell
,
D.
, 1997,
Statistical Methods for Psychology
,
Duxbury Press Belmont
,
CA
.
54.
Howell
,
D. C.
, 2009,
Statistical Methods for Psychology
,
Duxbury - Thomson Learning
,
Pacific Grove, CA
.
55.
Arkes
,
H.
, and
Blumer
,
C.
, 1985, “
The Psychology of Sunk Cost
,”
Org. Beh. Hum. Decis. Process.
,
35
(
1
), pp.
124
140
.
56.
Kahneman
,
D.
, and
Tversky
,
A.
, 1979, “
Prospect Theory: An Analysis of Decision under Risk
,”
Econometrica
,
47
(
2
), pp.
263
291
.
57.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
, 2011, “
Design Fixation in Physical Modeling: An Investigation on the Role of Sunk Cost
,” ASME IDETC- Design Theory and Methodology, Washington, D.C.
58.
Posner
,
G. J.
,
Strike
,
K. A.
,
Hewson
,
P. W.
, and
Gertzog
,
W. A.
, 1982, “
Accommodation of a Scientific Conception: Toward a Theory of Conceptual Change
,”
Sci. Educ.
,
66
(
2
), pp.
211
227
.
59.
Vosniadou
,
S.
, 2003, “
Exploring the Relationships Between Conceptual Change and Intentional Learning
,” Intentional conceptual change, Sinatra, G. M. and Pintrich, P. R. eds, Lawrence Erlbaum Associates, NJ, pp.
377
406
.
60.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
, 2010, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
J. Mech. Des.
,
132
(
4
), p.
041003
.
61.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
, 2011, “
Understanding Fixation: A Study on the Role of Expertise
,”
International Conference on Engineering Design
,
Kobenhavn
,
Denmark
.
62.
Viswanathan
,
V.
, and
Linsey
,
J.
, 2009, “
Enhancing Student Innovation: Physical Models in the Idea Generation Process
,”
Proceedings of Proc. Frontiers in Education Conference
,
San Antonio
,
TX
.
63.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
, 2010, “
Physical Models in Idea Generation - Hindrance or Help?
,”
International Conference on Design Theory and Methodology
,
Montreal
,
Quebec, Canada
.
You do not currently have access to this content.