Unlike a conventional aircraft’s wing, a morphing aircraft’s wing could undergo large deformations in order to fly efficiently. This requires a wing’s skin meeting conflicting requirements such as large deformation capability to allow morphing of the underlying structure and high flexural stiffness to maintain the airfoil shape. In this paper, the design of composite skins with a cellular core is considered for the particular case of one-dimensional morphing. Cellular core topologies are calculated using a multi-objective genetic algorithm coupled with a local search optimizer. Morphological filtering is used to remove small features in the topology. As a multi-objective problem, no single solution emerges as the clear best solution because of conflicting objectives. However, the solutions found help guide the design of cellular-based morphing skins. A design is selected from the set of solutions obtained, and a cellular core under combined in-plane morphing and out-of-plane loading is examined with respect to the local stresses, the energy of deformation and the core’s out-of-plane deformation to validate the approach used.

References

References
1.
Glezer
,
A.
, and
Amitay
,
M.
, 2002, “
Synthetic Jets
,”
Annu. Rev. Fluid Mech.
,
34
, pp.
503
529
.
2.
Thill
,
C.
,
Etches
,
J.
,
Bond
,
I.
,
Potter
,
K.
, and
Weaver
,
P.
, 2008, “
Morphing Skins
,”
Aeronautical J.
,
112
, pp.
117
139
.
3.
Gandhi
,
F.
, and
Anusonti-Inthra
,
P.
, 2008, “
Skin Design Studies for Variable Camber Morphing Airfoils
,”
Smart Mater. Struct.
,
17
(
1
), p.
015025
.
4.
Kikuta
,
M. T.
, 2003, “
Mechanical Properties of Candidate Materials for Morphing Wings
,” Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
5.
Perkins
,
D. A.
,
Reed
,
J. L.
, and
Havens
,
E.
, 2004, “
Morphing Wing structures for Loitering Air Vehicles
,”
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, AIAA Paper No. 2004-1888.
6.
Reed
,
J. L.
,
Hemmelgarn
,
C. D.
,
Pelley
,
B. M.
, and
Havens
,
E.
, 2005, “
Adaptive Wing Structures
,”
Proc. SPIE
,
5388
, pp.
225
233
.
7.
Keihl
,
M. M.
,
Bortolin
,
R. S.
,
Sanders
,
B.
,
Joshi
,
S.
, and
Tidwell
,
Z.
, 2005, “
Mechanical Properties of Shape Memory Polymers for Morphing Aircraft Applications
,”
SPIE, Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies
, Vol.
5762
, pp.
143
151
8.
Yokozeki
,
T.
,
Takeda
,
S.-I.
,
Ogasawara
,
T.
, and
Ishikawa
,
T.
, 2006, “
Mechanical Properties of Corrugated Composites for Candidate Materials of Flexible Wing Structures
,”
Composites, Part A
,
37
(
10
), pp.
1578
1586
.
9.
Murray
,
G.
,
Gandhi
,
F.
, and
Bakis
,
C.
, 2010, “
Flexible Matrix Composite Skins for One-Dimensional Wing Morphing
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1771
1781
.
10.
Joo
,
J. J.
,
Reich
,
G. W.
, and
Westfall
,
J. T.
, 2009, “
Flexible Skin Development for Morphing Aircraft Applications via Topology Optimization
,”
J. Intell. Mater. Syst. Struct.
,
20
(
16
), pp.
1969
1985
.
11.
Bubert
,
E. A.
,
Woods
,
B. K. S.
,
Lee
,
K.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
, 2010, “
Design and Fabrication of a Passive 1D Morphing Aircraft Skin
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1699
1717
.
12.
Olympio
,
K. R.
, and
Gandhi
,
F.
, 2010, “
Flexible Skins for Morphing Aircraft Structures using Cellular Honeycomb Cores
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1719
1735
.
13.
Olympio
,
K. R.
and
Gandhi
,
F.
, 2010, “
Zero-Poisson’s Ratio Cellular Flexible Skins for One-Dimensional Morphing
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1737
1753
.
14.
Asheghian
,
L.
,
Reich
,
G.
,
Enke
,
A.
, and
Kudva
,
J.
, 2011, “
Shear Morphing Skins—Simulation and Testing of Optimized Design
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
945
960
.
15.
Bowman
,
J.
,
Sanders
,
B.
,
Cannon
,
B.
,
Kudva
,
J.
,
Joshi
,
S.
, and
Weisshaar
,
T.
, 2007, “
Development of Next Generation Morphing Aircraft Structures
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, AIAA Paper No. 2007-1730.
16.
Yu
,
S. D.
, and
Cleghorn
,
W. L.
, 2005, “
Free Flexural Vibration Analysis of Symmetric Honeycomb Panels
,”
J. Sound Vib.
,
284
, pp.
189
204
.
17.
Kim
,
I. Y.
, and
de Weck
,
O. L.
, 2005, “
Variable Chromosome Length Genetic Algorithm for Progressive Refinement In Topology Optimization
,”
Struct. Multidiscip. Optim.
,
29
, pp.
445
456
.
18.
Sigmund
,
O.
, 2007, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
, pp.
401
424
.
19.
Lobo
,
F.
, and
David Goldberg
,
E.
, 1997, “
Decision Making in a Hybrid Genetic Algorithm
,”
Proceedings of 1997 IEEE Conference on Evolutionary Computation
, pp.
121
125
.
20.
Goel
,
T.
, and
Deb
,
K.
, 2001, “
Hybrid Methods for Multi-Objective Evolutionary Algorithms
,” KanGAL, Report No. 2001004.
21.
Kollat
,
J. B.
, and
Reed
,
P. M.
, 2006, “
Comparing State-of-the-Art Evolutionary Multi-Objective Algorithms for Long-Term Groundwater Monitoring Design
,”
Adv. Water Resour.
,
29
, pp.
792
807
.
22.
Back
T.
,
Fogel
D. B.
, and
Michalewicz
,
Z.
, 1997,
Handbook of Evolutionary Computation
,
Oxford University Press
.
23.
Deb
,
K.
, and
Goel
,
T.
, 2001, “
A Hybrid Multi-Objective Evolutionary Approach to Engineering Shape Design
,”
Proceedings of the First International Conference on Evolutionary Multi Criterion Optimization (EMO-2001)
, pp.
385
399
.
24.
Onck
,
P.
,
Ashby
,
E. W.
, and
Gibson
,
L.
, 2001, “
Size Effects in Ductile Cellular Solids. Part I: Modeling
,”
Int. J. Mech. Sci.
,
43
(
3
), pp.
681
699
.
25.
Onck
,
P.
,
Ashby
,
E. W.
, and
Gibson
,
L.
, 2001, “
Size Effects in Ductile Cellular Solids. Part II: Experimental Results
,”
Int. J. Mech. Sci.
,
43
(
3
), pp.
701
713
.
26.
Mehta
,
V.
, and
Frecker
,
M.
, and
Lesieutre
,
G. A.
, 2009, “
Stress Relief in Contact-Aided Compliant Cellular Mechanisms
,”
J. Mech. Des.
,
131
(
9
), p.
091009
.
You do not currently have access to this content.