This work presents a novel optimal design framework that treats uncertain dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as system parameters, initial conditions, sensor and actuator noise, and external forcing. The inclusion of uncertainty in design is of paramount practical importance because all real-life systems are affected by it. Designs that ignore uncertainty often lead to poor robustness and suboptimal performance. In this work, uncertainties are modeled using generalized polynomial chaos and are solved quantitatively using a least-square collocation method. The uncertainty statistics are explicitly included in the optimization process. Systems that are nonlinear have active constraints, or opposing design objectives are shown to benefit from the new framework. Specifically, using a constraint-based multi-objective formulation, the direct treatment of uncertainties during the optimization process is shown to shift, or off-set, the resulting Pareto optimal trade-off curve. A nonlinear vehicle suspension design problem, subject to parametric uncertainty, illustrates the capability of the new framework to produce an optimal design that accounts for the entire family of systems within the associated probability space.

References

References
1.
Gobbi
,
M.
, and
Mastinu
,
G.
, 2001, “
Analytical Description and Optimization of the Dynamic Behaviour of Passively Suspended Road Vehicles
,”
J. Sound Vib.
,
245
(
3
), pp.
457
481
.
2.
Verros
,
G.
,
Natsiavas
,
S.
, and
Papadimitriou
,
C.
, 2005, “
Design Optimization of Quarter-Car Models With Passive and Semi-Active Suspensions Under Random Road Excitation
,”
J. Vib. Control
,
11
(
5
), pp.
581
606
.
3.
He
,
Y.
, and
Mcphee
,
J.
, 2005, “
Multidisciplinary Design Optimization of Mechatronic Vehicles With Active Suspensions
,”
J. Sound Vib.
,
283
(
1-2
), pp.
217
241
.
4.
He
,
Y.
, and
Mcphee
,
J.
, 2007, “
Application of Optimisation Algorithms and Multibody Dynamics to Ground Vehicle Suspension Design
,”
Int. J. Heavy Vehicle Syst.
,
14
(
2
), pp.
158
192
.
5.
Alkhatib
,
R.
,
Nakhaie Jazar
,
G.
, and
Golnaraghi
,
M.
, 2004, “
Optimal Design of Passive Linear Suspension Using Genetic Algorithm
,”
J. Sound Vib.
,
275
(
3–5
), pp.
665
691
.
6.
Jazar
,
R. N.
, 2008,
Vehicle Dynamics: Theory and Application
,
Springer
,
USA
.
7.
Hrovat
,
D.
, 1993, “
Applications of Optimal Control to Advanced Automotive Suspension Design
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
2B
), pp.
328
342
.
8.
Georgiou
,
G.
,
Verros
,
G.
, and
Natsiavas
,
S.
, 2007, “
Multi-Objective Optimization of Quarter-Car Models With a Passive or Semi-Active Suspension System
,”
Veh. Syst. Dyn.
,
45
(
1
), pp.
77
92
.
9.
Segla
,
S.
, and
Reich
,
S.
, 2007, “
Optimization and Comparison of Passive, Active, and Semi-Active Vehicle Suspension Systems
,”
12th IFToMM World Congress
, Besancon, France.
10.
Baumal
,
A. E.
,
Mcphee
,
J. J.
, and
Calamai
,
P. H.
, 1998, “
Application of Genetic Algorithms to the Design Optimization of an Active Vehicle Suspension System
,”
Comput. Methods Appl. Mech. Eng.
,
163
(
1–4
), pp.
87
94
.
11.
He
,
Y.
, and
Mcphee
,
J.
, 2005, “
Multidisciplinary Optimization of Multibody Systems With Application to the Design of Rail Vehicles
,”
Multibody Syst. Dyn.
,
14
(
2
), pp.
111
135
.
12.
He
,
Y.
, and
Mcphee
,
J.
, 2005, “
A Design Methodology for Mechatronic Vehicles: Application of Multidisciplinary Optimization, Multibody Dynamics and Genetic Algorithms
,”
Veh. Syst. Dyn.
,
43
(
10
), pp.
697
733
.
13.
Good
,
C.
, and
Mcphee
,
J.
, 1999, “
Dynamics of Mountain Bicycles With Rear Suspensions: Modelling and Simulation
,”
Sports Eng. (Int. Sports Eng. Assoc.)
,
2
(
3
), pp.
129
143
.
14.
Good
,
C.
, and
Mcphee
,
J.
, 2000, “
Dynamics of Mountain Bicycles With Rear Suspensions: Design Optimization
,”
Sports Eng. (Int. Sports Eng. Assoc.)
,
3
(
1
), pp.
49
55
.
15.
Papoulis
,
A.
,
Pillai
,
S.
, and
Unnikrishna
,
S.
, 2002,
Probability, Random Variables, and Stochastic Processes
,
McGraw-Hill
,
New York
.
16.
Rensburg
,
E.
, and
Torrie
,
G.
, 1993, “
Estimation of Multidimensional Integrals: Is Monte Carlo the Best Method?
,”
J. Phys. A
,
26
(
4
), pp.
943
953
.
17.
Bratley
,
P.
,
Fox
,
B.
, and
Niederreiter
,
H.
, 1992, “
Implementation and Tests of Low-Discrepancy Sequences
,”
ACM Trans. Model. Comput. Simul.
,
2
(
3
), pp.
195
213
.
18.
Wiener
,
N.
, 1938, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
19.
Xiu
,
D.
, and
Karniadakis
,
G.
, 2002, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
20.
Xiu
,
D.
, 2009, “
Fast Numerical Methods for Stochastic Computations: A Review
,”
Commun. Comput. Phys.
,
5
(
2–4
), pp.
242
272
.
21.
Xiu
,
D.
, and
Hesthaven
,
J. S.
, 2005, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.
22.
Xiu
,
D.
, 2007, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Commun. Comput. Phys.
,
2
(
2
), pp.
293
309
. Available at https://global-sci.com/freedownload/v2_293.pdfhttps://global-sci.com/freedownload/v2_293.pdf
23.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Systems With Uncertainties. Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.
24.
Cheng
,
H.
, and
Sandu
,
A.
, 2009, “
Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems
,”
Math. Comput. Simul.
,
79
(
11
), pp.
3278
3295
.
25.
Wan
,
X.
, and
Karniadakis
,
G.
, 2005, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
.
26.
Wan
,
X.
, and
Karniadakis
,
G.
, 2006, “
Adaptive Numerical Solutions of Stochastic Differential Equations
,”
Comput. Math. Appl.
, pp.
561
573
. Available at http://research.brown.edu/publications/1106970078.pdfhttp://research.brown.edu/publications/1106970078.pdf
27.
Wan
,
X.
, and
Karniadakis
,
G.
, 2006, “
Beyond Wiener–Askey Expansions: Handling Arbitrary Pdfs
,”
J. Sci. Comput.
,
27
(
1
), pp.
455
464
.
28.
Wan
,
X.
, and
Karniadakis
,
G.
, 2007, “
Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures
,”
SIAM J. Sci. Comput.
,
28
(
3
), pp.
901
928
.
29.
Foo
,
J.
,
Wan
,
X.
, and
Karniadakis
,
G.
, 2008, “
The Multi-Element Probabilistic Collocation Method: Error Analysis and Simulation
,”
J. Comput. Phys
,
227
(
22
), pp.
9572
9595
.
30.
Foo
,
J.
, and
Karniadakis
,
G. E.
, 2010, “
Multi-Element Probabilistic Collocation Method in High Dimensions
,”
J. Comput. Phys.
,
229
(
5
), pp.
1536
1557
.
31.
Gerritsma
,
M.
,
Van Der Steen
,
J.-B.
,
Vos
,
P.
, and
Karniadakis
,
G.
, 2010, “
Time-Dependent Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
229
(
22
), pp.
8333
8363
.
32.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Systems With Uncertainties. Part II: Numerical Applications
,”
Multibody Syst. Dyn.
,
15
(
3
), pp.
241
262
.
33.
Cheng
,
H.
, and
Sandu
,
A.
, 2007, “
Numerical Study of Uncertainty Quantification Techniques for Implicit Stiff Systems
,”
Proceedings of the 45-th ACM Southeast Conference
, Winston-Salem, NC, USA, pp.
367
372
.
34.
Cheng
,
H.
, and
Sandu
,
A.
, 2009, “
Uncertainty Quantification in 3d Air Quality Models Using Polynomial Chaoses
,”
Environ. Modell. Software
,
24
(
8
), pp.
917
925
.
35.
Cheng
,
H.
, and
Sandu
,
A.
, 2009, “
Uncertainty Apportionment for Air Quality Forecast Models
,”
Proceedings of 24th Annual ACM Symposium on Applied Computing (SAC-2009), Computational Sciences Track
, Honolulu, HI, USA, pp.
956
960
.
36.
Cheng
,
H.
, and
Sandu
,
A.
, 2010, “
Collocation Least-Squares Polynomial Chaos Method
,”
Proceedings of the 2010 Spring Simulation Multiconference (SpringSim’10), High Performance Computing Symposium (HPC-2010)
, Orlando, FL, USA, p.
80
.
37.
Blanchard
,
E.
, 2010, “
Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems With Uncertain Parameters
,” Doctorate thesis, Virginia Tech, Blacksburg.
38.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2007, “
Parameter Estimation Method Using an Extended Kalman Filter
,”
Joint North America, Asia-Pacific ISTVS Conference
, Fairbanks, Alaska, USA, pp.
23
26
.
39.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2009, “
Parameter Estimation for Mechanical Systems Via an Explicit Representation of Uncertainty
,”
Eng. Comput.
,
26
(
5
), pp.
541
569
.
40.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2010, “
Polynomial Chaos-Based Parameter Estimation Methods Applied to a Vehicle System
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn.
,
224
(
1
), pp.
59
81
.
41.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2010, “
Polynomial Chaos Based Method for the Lqr Problem With Uncertain Parameters in the Formulation
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Montreal, CA.
42.
Blanchard
,
E.
,
Sandu
,
C.
, and
Sandu
,
A.
, 2007, “
A Polynomial-Chaos-Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems
,”
Proceedings of the ASME IDETC 2007, 9th International Conference on Advanced Vehicle and Tire Technology
, Las Vegas, NV, USA, pp.
4
7
.
43.
Blanchard
,
E.
,
Sandu
,
C.
, and
Sandu
,
A.
, 2009, “
Comparison Between a Polynomial-Chaos-Based Bayesian Approach and a Polynomial-Chaos-Based Ekf Approach for Parameter Estimation With Application to Vehicle Dynamics
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 11th International Conference on Advanced Vehicle and Tire Technology
, San Diego, CA, USA.
44.
Blanchard
,
E.
, and
Sandu
,
D.
, 2007, “
A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems-Part 2: Applications to Vehicle Systems
,” Technical Report No. TR-07-39, Virginia Tech, Blacksburg.
45.
Blanchard
,
E.
, and
Sandu
,
D.
, 2007, “
A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems–Part 1: Theoretical Approach
,” Technical Report No. TR-07-38, Virginia Tech, Blacksburg.
46.
Blanchard
,
E. D.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2010, “
A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
6
), p.
061404
.
47.
Pence
,
B.
,
Hays
,
J.
,
Fathy
,
H.
,
Sandu
,
C.
, and
Stein
,
J.
, 2011, “
Vehicle Sprung Mass Estimation for Rough Terrain
,”
Int. J. Veh. Des.
, Special Issue on Modeling and Simulation of Ground Vehicle Systems (submitted). Available at http://www.inderscience.com/browse/index.php?journalID=31&action=cominghttp://www.inderscience.com/browse/index.php?journalID=31&action=coming
48.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
, 2009, “
A Base-Excitation Approach to Polynomial Chaos-Based Estimation of Sprung Mass for Off-Road Vehicles
,”
ASME Dynamic Systems and Control Conference, n PART A
, pp.
857
864
.
49.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
, 2010, “
Recursive Bayesian Parameter Estimation Using Polynomial Chaos Theory
.”
50.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
, 2010, “
An Integrated Cost/Maximum Likelihood Approach to Recursive Polynomial Chaos Parameter Estimation
.”
51.
Southward
,
S.
, 2007, “
Real-Time Parameter Id Using Polynomial Chaos Expansions
,”
ASME Conference Proceedings
, pp.
1167
1173
.
52.
Shimp
III,
S.
, 2008, “
Vehicle Sprung Mass Parameter Estimation Using an Adaptive Polynomial-Chaos Method
,” Master’s thesis, Virginia Tech, Blacksburg.
53.
Marzouk
,
Y.
, and
Xiu
,
D.
, 2009, “
A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems
,”
Commun. Comput. Phys.
,
6
, pp.
826
847
.
54.
Marzouk
,
Y. M.
,
Najm
,
H. N.
, and
Rahn
,
L. A.
, 2007, “
Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems
,”
J. Comput. Phys.
,
224
(
2
), pp.
560
586
.
55.
Price
,
D.
, 2008, “
Estimation of Uncertain Vehicle Center of Gravity Using Polynomial Chaos Expansions
,” Master’s thesis, Virginia Tech, Blackburg.
56.
Smith
,
A.
,
Monti
,
A.
, and
Ponci
,
F.
, 2007, “
Indirect Measurements Via a Polynomial Chaos Observer
,”
IEEE Trans. Instrum. Meas.
,
56
(
3
), pp.
743
752
.
57.
Li
,
J.
, and
Xiu
,
D.
, 2009, “
A Generalized Polynomial Chaos Based Ensemble Kalman Filter With High Accuracy
,”
J. Comput. Phys.
,
228
(
15
), pp.
5454
5469
.
58.
Saad
,
G.
,
Ghanem
,
R.
, and
Masri
,
S.
, 2007, “
Robust System Identification of Strongly Non-Linear Dynamics Using a Polynomial Chaos Based Sequential Data Assimilation Technique
,”
6
, pp.
6005
6013
.
59.
Templeton
,
B.
, 2009, “
A Polynomial Chaos Approach to Control Design
,” Doctorate thesis, Virginia Tech, Blacksburg.
60.
Smith
,
A.
,
Monti
,
A.
, and
Ponci
,
F.
, 2006, “
Robust Controller Using Polynomial Chaos Theory
,”
Industry Applications Conference
, Tampa, FL, Oct. 8–12, pp.
2511
2517
.
61.
Prempraneerach
,
P.
,
Hover
,
F.
,
Triantafyllou
,
M.
, and
Karniadakis
,
G.
, 2010, “
Uncertainty Quantification in Simulations of Power Systems: Multi-Element Polynomial Chaos Methods
,”
Reliab. Eng. Syst. Saf.
,
95
, pp.
632
646
.
62.
Kewlani
,
G.
, and
Iagnemma
,
K.
, 2009, “
A Multi-Element Generalized Polynomial Chaos Approach to Analysis of Mobile Robot Dynamics Under Uncertainty
,” Intelligent Robots and Systems, IROSIEEE/RSJ International Conference on 2009, pp.
1177
1182
, ©2009 Institute of Electrical and Electronics Engineers.
63.
Fisher
,
J.
, and
Bhattacharya
,
R.
, 2008, “
On Stochastic Lqr Design and Polynomial Chaos
,”
American Control Conference
, pp.
95
100
.
64.
Fisher
,
J.
, and
Bhattacharya
,
R.
, 2011, “
Optimal Trajectory Generation With Probabilistic System Uncertainty Using Polynomial Chaos
,”
ASME J. Dyn. Syst., Meas., Control
,
133
, p.
014501
.
65.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
, 2011, “
Motion Planning of Uncertain Fully-Actuated Dynamical Systems—An Inverse Dynamics Formulation
,”
ASME IDETC/CIE Conference
, Washington, DC, USA.
66.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
, 2011, “
Motion Planning of Uncertain Fully-Actuated Dynamical Systems—A Forward Dynamics Formulation
,”
ASME IDETC/CIE Conference
, Washington, DC, USA.
67.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
, 2011, “
Motion Planning of Uncertain Under-Actuated Dynamical Systems—A Hybrid Dynamics Formulation
,”
Proceedings of the ASME 2011 International Mechanical Engieneering Congress and Exposition
, Denver, CO, USA.
68.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
, 2011, “
Motion Planning of Uncertain Ordinary Differential Equation Systems
,” Technical Report No. TR-11-04, Virginia Tech, Blacksburg, VA, USA.
69.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
70.
Hamel
,
J. M.
, and
Azarm
,
S.
, 2011, “
Reducible Uncertain Interval Design by Kriging Metamodel Assisted Multi-Objective Optimization
,”
ASME J. Mech. Des.
,
133
(
1
), p.
011002
.
71.
Poles
,
S.
, and
Lovison
,
A.
, 2009, “
A Polynomial Chaos Approach to Robust Multiobjective Optimization
,”
Hybrid and Robust Approaches to Multiobjective Optimization
, Dagstuhl, Germany, pp.
1
15
.
72.
Xiong
,
F.
,
Xue
,
B.
,
Yan
,
Z.
, and
Yang
,
S.
, 2011, “
Polynomial Chaos Expansion Based Robust Design Optimization
,”
2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE)
, Xian, China, pp.
868
873
.
73.
Coelho
,
R. F.
, and
Bouillard
,
P.
, 2011, “
Multi-Objective Reliability-Based Optimization With Stochastic Metamodels
,”
Evol. Comput.
,
19
(
4
), pp.
525
560
.
74.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
, 2011, “
Parametric Design Optimization of Uncertain Ordinary Differential Equation Systems
,”
Proceedings of the ASME 2011 International Mechanical Engieneering Congress and Exposition
, Denver, CO, USA.
75.
Hays
,
J.
,
Sandu
,
A.
,
Sandu
,
C.
, and
Hong
,
D.
, 2011, “
Parametric Design Optimization of Uncertain Ordinary Differential Equation Systems
,” Technical Report No. TR-11-06, Virginia Tech, Blacksburg, VA, USA.
76.
Greenwood
,
D.
, 2003,
Advanced Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
77.
Murray
,
R.
,
Li
,
Z.
,
Sastry
,
S.
, and
Sastry
,
S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press, Inc
,
Boca Raton, FL, USA
.
78.
Nikravesh
,
P. E.
, 2004, “
An Overview of Several Formulations for Multibody Dynamics
,”
Product Engineering
,
Springer-Verlag
,
Berlin, Germany
.
79.
Haug
,
E. J.
, 1989,
Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol. 1: Basic Methods
,
Allyn & Bacon, Inc.
,
Boston, Massachusetts
.
80.
Diehl
,
M.
,
Ferreau
,
H.
, and
Haverbeke
,
N.
, 2009, “
Efficient Numerical Methods for Nonlinear Mpc and Moving Horizon Estimation
,”
Nonlinear Model Predictive Control
,
L.
Magni
et al. (Eds.),
Nonlinear Model Predictive Control, LNCIS 384
, springerlink.com (©)
Springer-Verlag Berlin Heidelberg 2009
, pp.
391
417
.
82.
Biegler
,
L. T.
, and
Grossmann
,
I. E.
, 2004, “
Retrospective on Optimization
,”
Comput. Chem. Eng.
,
28
(
8
), pp.
1169
1192
.
83.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
, 2003,
Stochastic Finite Elements: A Spectral Approach
,
Dover Publications
,
Mineola, NY
.
84.
Isukapalli
,
S. S.
,
Roy
,
A.
, and
Georgopoulos
,
P. G.
, 1998, “
Stochastic Response Surface Methods (Srsms) for Uncertainty Propagation: Application to Environmental and Biological Systems
,”
Risk Anal.
,
18
(
3
), pp.
351
363
.
You do not currently have access to this content.