Computer, or simulation, models are ubiquitous in science and engineering. Two research topics in building computer models, generally treated separately, are sensitivity analysis and computer model calibration. In sensitivity analysis, one quantifies the effect of each input factor on outputs, whereas in calibration, one finds the values of input factors that provide the best match to a set of test data. In this article, we show a connection between these two seemingly separate concepts for problems with transient signals. We use global sensitivity analysis for computer models with transient signals to screen out inactive input factors, thus making the calibration algorithm numerically more stable. We show that the computer model does not vary with respect to parameters having zero total sensitivity indices, indicating that such parameters are impossible to calibrate and must be screened out. Because the computer model can be computationally intensive, we construct a fast statistical surrogate of the computer model which is used for both sensitivity analysis and computer model calibration. We illustrate our approach with both a simple example and an automotive application involving a road load data acquisition (RLDA) computer model.

References

References
1.
Bayarri
,
M. J.
,
Berger
,
J. O. A.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C. H.
, and
Tu
,
J.
, 2007, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
, pp.
138
154
.
2.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Cafeo
,
J.
,
Garcia-Donato
,
G.
,
Liu
,
F.
,
Palomo
,
J.
,
Parthasarathy
,
R. J.
,
Paulo
,
R.
,
Sacks
,
J.
, and
Walsh
,
D.
, 2007, “
Computer Model Validation With Functional Output
,”
Ann. Stat.
,
35
, pp.
1874
1906
.
3.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
, 2008, “
Computer Model Calibration Using High Dimensional Outputs
,”
J. Am. Stat. Assoc.
,
103
, pp.
570
583
.
4.
Bliznyuk
,
N.
,
Ruppert
,
D.
,
Shoemaker
,
C.
,
Regis
R.
,
Wild
,
S.
, and
Mugunthan
P.
, 2008, “
Bayesian Calibration and Uncertainty Analysis for Computationally Expensive Models Using Optimization and Radial Basis Function Approximation
,”
J. Comput. Graph. Stat
,
17
, pp.
270
294
.
5.
Drignei
,
D.
,
Forest
,
C.
, and
Nychka
,
D.
, 2008, “
Parameter Estimation for Computationally Intensive Nonlinear Regression With an Application to Climate Modeling
,”
Ann. Appl. Stat.
,
2
, pp.
1217
1230
.
6.
Demidenko
,
E.
, 2004,
Mixed Models: Theory and Applications
,
Wiley
,
New York
.
7.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
,
Ratto
,
M.
, 2004,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
,
Wiley
,
New York
.
8.
Mardia
,
K. V.
, and
Marshall
,
R. J.
, 1984, “
Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression
,”
Biometrika
,
71
, pp.
135
146
.
9.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
10.
Schervish
,
M. J.
, 1995,
Theory of Statistics
,
Springer
,
New York
.
11.
Fang
,
K.T.
,
Li
,
R.
, and
Sudjianto
,
A.
, 2007,
Design and Modeling for Computer Experiments
,
Chapman and Hall
,
London
.
12.
Drignei
,
D.
, 2010, “
Functional ANOVA in Computer Models With Time Series Output
,
Technometrics
,
52
, pp.
430
437
.
13.
Zhang
,
Z.
,
Li
,
R.
, and
Sudjianto
,
A.
, 2007, “Modeling Computer Experiments With Multiple Responses, SAE Paper No. 2007–01-1655.
14.
Ramsay
,
J. O.
, and
Silverman
,
B. W.
, 1997,
Functional Data Analysis,
Springer
,
New York
.
15.
Atkinson
,
K. L.
, 1989,
An Introduction to Numerical Analysis
,
John Wiley & Sons
,
Canada
.
16.
Morris
,
M. D.
,
Mitchell
,
T. J.
, and
Ylvisaker
,
D.
, 1993, “
Bayesian Design and Analysis of Computer Experiments: Use of Derivatives in Surface Prediction
,”
Technometrics
,
35
, pp.
243
255
.
17.
Stein
,
M. L.
, 1999,
Interpolation of Spatial Data: Some Theory for Kriging
,
Springer
,
New York
.
18.
Drignei
,
D.
, 2009, “
A Kriging Approach to the Analysis of Climate Model Experiments
,
J. Agric, Biol., Environ. Stat.
,
14
, pp.
99
114
.
You do not currently have access to this content.