This paper presents the energy absorption properties of hexagonal honeycomb structures of varying cellular geometries under high speed in-plane crushing. While the crushing responses in terms of energy absorption and densification strains have been extensively researched and reported, a gap is identified in the generalization of honeycombs with contr’olled and varying geometric parameters. This paper addresses this gap through a series of finite element (FE) simulations where the cell angle and the inclined wall thickness, are varied while maintaining a constant mass of the honeycomb structure. A randomly filled, nonrepeating design of experiments (DOEs) is generated to determine the effects of these geometric parameters on the output of energy absorbed and a statistical sensitivity analysis is used to determine the parameters significant for the crushing energy absorption of honeycombs. It is found that while an increase in the inclined wall thickness enhances the energy absorption of the structure, increases in either the cell angle or ratio of cell angle to inclined wall thickness have adverse effects on the output. Finally, the optimization results suggest that a cellular geometry with a positive cell angle and a high inclined wall thickness provides for maximum energy absorption, which is verified with a 6% error when compared to a FE simulation.

References

References
1.
Tarlochan
,
F.
, and
Farids
,
A.
, 2009, “
Sustainability Design: Reduction of Vehicle Mass Without Compromising Crashworthiness
,”
ICEE International Conference on Energy and Environment
, Malacca, Malaysia.
2.
Deqiang
,
S.
,
Weihong
,
Z.
, and
Yanbin
,
W.
, 2010, “
Mean Out-of-Plane Dynamic Plateau Stresses of Hexagonal Honeycomb Cores under Impact Loadings
,”
Compos. Struct.
,
92
, pp.
2609
2621
.
3.
Ajdari
,
A.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
, 2011, “
Dynamic Crushing and Energy Absorption of Regular, Irregular, and Functionally Graded Cellular Structures
,”
Int. J. Solids Struct.
,
48
, pp.
506
516
.
4.
Zheng
,
Z.
,
Yu
,
J.
, and
Li
,
J.
, 2005, “
Dynamic Crushing of 2D Cellular Structures: A Finite Element Study
,”
Int. J. Impact Eng.
,
32
, pp.
650
664
.
5.
Nakamoto
,
H.
,
Adachi
,
T.
, and
Araki
,
W.
, 2009, “
In-Plane Impact Behavior of Honeycomb Structures Randomly Filled With Rigid Inclusions
,”
Int. J. Impact Eng.
,
36
, pp.
73
80
.
6.
Nakamoto
,
H.
,
Adachi
,
T.
, and
Araki
,
W.
, 2009, “
In-Plane Impact Behavior of Honeycomb Structures Filled With Linearly Arranged Inclusions
,”
Int. J. Impact Eng.
,
36
, pp.
1019
1026
.
7.
Liu
,
Y.
, and
Zhang
,
X.
, 2009, “
The Influence of Cell Micro-Topology on the In-Plane Dynamic Crushing of Honeycombs
,”
Int. J. Impact Eng.
,
36
, pp.
98
109
.
8.
Li
,
K.
,
Gao
,
X.
, and
Wang
,
J.
, 2007, “
Dynamic Crushing Behavior of Honeycomb Structures With Irregular Cell Shapes and Non-Uniform Cell Wall Thickness
,”
Int. J. Solids Struct.
,
44
, pp.
5003
5026
.
9.
Wang
,
D.
, 2009, “
Impact Behavior and Energy Absorption of Paper Honeycomb Sandwich panels
,”
Int. J. Impact Eng.
,
36
, pp.
110
114
.
10.
Caldwell
,
B.
,
Namouz
,
E.
,
Richardson
,
J.
,
Sen
,
C.
,
Rotenburg
,
T.
,
Mocko
,
G.
,
Summers
,
J.
, and
Obiego
,
A.
, 2010, “
Automotive Lightweight Engineering: A Method for Identifying Lazy Parts
,”
Int. J. Veh. Des.
, (in press), http://www.inderscience.com/browse/index.php?journalID=31&action=cominghttp://www.inderscience.com/browse/index.php?journalID=31&action=coming
11.
Zou
,
Z.
,
Reid
,
S.
,
Tan
,
P.
,
Li
,
S.
, and
Harrigan
,
J.
, 2009, “
Dynamic Crushing of Honeycombs and Features of Shock Fronts
,”
Int. J. Impact Eng.
,
36
, pp.
165
176
.
12.
Atli
,
B.
, and
Gandhi
,
F.
, 2008, “
Energy Absorption of Cellular Honeycombs with Various Cell Angles Under In-Plane Compressive Loading
,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Schaumburg, IL.
13.
Hu
,
L.
, and
Yu
,
T.
, 2010, “
Dynamic Crushing Strength of Hexagonal Honeycombs
,”
Int. J. Impact Eng.
,
37
, pp.
467
474
.
14.
Zhang
,
X.
,
Liu
,
Y.
,
Wang
,
B.
, and
Zhang
,
Z.
, 2010, “
Effects of Defects on the In-Plane Dynamic Crushing of Metal Honeycombs
,”
Int. J. Mech. Sci.
,
52
, pp.
1290
1298
.
15.
Zarei
,
Z.
, and
Kroger
,
M.
, 2008, “
Optimum Honeycomb Filled Crash Absorber Design
,”
Mater. Des.
,
29
, pp.
193
204
.
16.
Wu
,
E.
, and
Jiang
,
W.-S.
, 1997, “
Axial Crush of Metallic Honeycombs
,”
Int. J. Impact Eng.
,
19
, pp.
439
456
.
17.
Pattofatto
,
S.
,
Elnasri
,
I.
,
Zhao
,
H.
,
Tsitsiris
,
H.
,
Hild
,
F.
, and
Girard
,
Y.
, 2007, “
Shock Enhancement of Cellular Structures Under Impact Loading: Part II Analysis
,”
J. Mech. Phys. Solids
,
55
, pp.
2672
2686
.
18.
Sibeaud
,
J.
,
Thamie
,
L.
, and
Puillet
,
C.
, 2008, “
Hypervelocity Impact on Honeycomb Target Structures: Experiments and Modeling
,”
Int. J. Impact Eng.
,
35
, pp.
1799
1807
.
19.
Berglind
,
L.
,
Ju
,
J.
, and
Summers
,
J.
, 2010, “
Method to Design Honeycombs for a Shear Flexible Structure
,”
Proceedings of the SAE World Congress and Exposition
, Detroit, MI.
20.
Ju
,
J.
,
Summers
,
J.
,
Ziegert
,
J.
, and
Fadel
,
G. M.
, 2009, “
Design of Honeycomb Meta-Materials for High Shear Flexure
,”
ASME IDETC/CIE Conference
, San Diego, CA.
21.
Ju
,
J.
,
Summers
,
J.
,
Ziegert
J.
, and
Fadel
,
G.
, 2010, “
Compliant Hexagonal Meso-Structures having both High Shear Strength and High Shear Strain
,”
Proceedings of the ASME International Design Engineering Technical Conferences
, Montreal, Quebec, Canada.
22.
Ju
,
J.
,
Summers
,
J.
,.
Ziegert
,
J.
, and
Fadel
,
G.
, 2009, “
Cyclic Energy Loss of Honeycombs under In-Plane Shear Loading
,”
ASME International Mechanical Engineering Conference and Exposition
, Lake Buena Vista, FL.
23.
Lira
,
C.
,
Innocenti
,
P.
, and
Scarpa
,
F.
, 2009, “
Transverse Elastic Shear of Auxetic Multi Re-entrant Honeycombs
,”
Compos. Struct.
,
90
, pp.
314
322
.
24.
Pattofatto
,
S.
,
Elnasri
,
I.
,
Zhao
,
H.
,
Tsitsiris
,
H.
,
Hild
,
F.
, and
Girard
,
Y.
, 2007, “
Shock Enhancement of Cellular Structures Under Impact Loading: Part I Experiments
,”
J. Mech. Phys. Solids
,
55
, pp.
2652
2671
.
25.
Yamashita
,
M.
, and
Gotoh
,
M.
, 2005, “
Impact Behavior of Honeycomb Structures With Various Cell Specifications—Numerical Simulation and Experiment
,”
Int. J. Impact Eng.
,
32
, pp.
618
630
.
26.
Yasui
,
Y.
, 2000, “
Dynamic Axial Crushing of Multi-Layer Honeycomb Panels and Impact Tensile Behavior of the Component Members
,”
Int. J. Impact Eng.
,
24
, pp.
659
671
.
27.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and
Horstemeyer
,
M. F.
, 2005, “
A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization
,”
Comput. Struct.
,
83
, pp.
2121
2136
.
28.
Schultz
,
J.
, 2011, “
Modeling and Finite Element Analysis Methods for the Dynamic Crushing of Honeycomb Cellular Meso-Structures
,” M.S. thesis, Department of Mechanical Engineering, Clemson University, Clemson, SC.
29.
Qiao
,
P.
,
Fan
,
W.
,
Davalos
,
J.
, and
Zou
,
G.
, 2008, “
Optimization of Transverse Shear Moduli for Composite Honeycomb Cores
,”
Compos. Struct.
,
85
, pp.
265
274
.
30.
Sun
,
G.
,
Li
,
G.
,
Stone
,
M.
, and
Li
,
Q.
, 2010, “
A Two-Stage Multi-Fidelity Optimization Procedure for Honeycomb-Type Cellular Materials
,”
Comput. Mater. Sci.
,
49
, pp.
500
511
.
31.
Zhang
,
Z.
,
Liu
,
S.
, and
Tang
,
Z.
, 2010, “
Crashworthiness Investigation of Kagome Honeycomb Sandwich Cylindrical Column Under Axial Crushing Loads
,”
Thin-Walled Struct.
,
48
, pp.
9
18
.
32.
Rahul, Chakraborty
,
D.
, and
Dutta
,
A.
, 2005, “
Optimization of FRP Composites Against Impact Induced Failure Using Island Model Parallel Genetic Algorithm
,”
Compos. Sci. Technol.
,
65
, pp.
2003
2013
.
33.
Lilliefors
,
H. W.
, 1967, “
On the Kolmogorov-Smirnov Ttest for Normality With Mean and Variance Unknown
,”
J. Am. Stat. Assoc.
,
62
, pp.
399
402
.
34.
Lenth
,
R. V.
, 1989, “
Quick and Easy Analysis of Unreplicated Factorials
,”
Technometrics
,
31
, pp.
469
473
.
35.
Box
,
G. E. P.
, and
Meyer
,
D. R.
, 1986, “
An Analysis for Unreplicated Fractional Factorials
,”
Technometrics
,
28
, pp.
11
18
.
36.
Buhmann
,
M. D.
, 2003,
Radial Basis Functions
,
Cambridge University Press
,
Cambridge, United Kingdom
.
37.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T.
, 2001, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidisc. Optim.
,
23
, pp.
1
13
.
38.
Ju
,
J.
, and
Summers
,
J.
, “
Compliant Hexagonal Periodic Lattice Structures Having Both High Shear Strength and High Shear Strain
,”
Mater. Des.
,
32
, pp.
512
524
.
You do not currently have access to this content.