Complex engineering design problems are often decomposed into a set of interdependent, distributed subproblems that are solved by domain-specific experts. These experts must resolve couplings between the subproblems and negotiate satisfactory, system-wide solutions. Set-based approaches help resolve these couplings by systematically mapping satisfactory regions of the design space for each subproblem and then intersecting those maps to identify mutually satisfactory system-wide solutions. In this paper, Bayesian network classifiers are introduced for mapping sets of promising designs, thereby classifying the design space into satisfactory and unsatisfactory regions. The approach is applied to two example problems—a spring design problem and a simplified, multilevel design problem for an unmanned aerial vehicle (UAV). The method is demonstrated to offer several advantages over competing techniques, including the ability to represent arbitrarily shaped and potentially disconnected regions of the design space and the ability to be updated straightforwardly as new information about the satisfactory design space is discovered. Although not demonstrated in this paper, it is also possible to interface the classifier with automated search and optimization techniques and to combine expert knowledge with the results of quantitative simulations when constructing the classifiers.

References

References
1.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
, pp.
474
480
.
2.
Haftka
,
R. T.
, 1985, “
Simultaneous Analysis and Design
,”
AIAA J.
,
23
(
7
), pp.
1099
1103
.
3.
Sobieszczanski-Sobieski
,
J.
, 1988, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,” Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, VA, NASA TM-101494, NASA CP-3031.
4.
Wujek
,
B. A.
,
Renaud
,
J. E.
,
Batill
,
S. M.
, and
Brockman
,
J. B.
, 1996, “
Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Computing Environment
,”
Concurr. Eng. Res. Appl.
,
4
(
4
), pp.
361
377
.
5.
Kroo
,
I.
,
Altus
,
S.
,
Braun
,
R.
,
Gage
,
P.
, and
Sobieski
,
I.
, 1994, “
Multidisciplinary Optimization Methods for Aircraft Preliminary Design
,”
5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Panama City, FL, Vol.
1
, pp.
697
707
, Paper No. AI AA-94-4325.
6.
Sobieszczanski-Sobieski
,
J.
, and
Kodiyalam
,
S.
, 2001, “
BLISS/S: A New Method for Two-Level Structural Optimization
,”
Struct. Multidiscip. Optim.
,
21
(
1
), pp.
1
13
.
7.
Gunawan
,
S.
,
Farhang-Mehr
,
A.
, and
Azarm
,
S.
, 2004, “
On Maximizing Solution Diversity in a Multiobjective Multidisciplinary Genetic Algorithm for Design Optimization
,”
Mech. Based Des. Struct. Mach.
,
32
(
4
), pp.
491
514
.
8.
Sobek
,
D. K.
,
Ward
,
A.
, and
Liker
,
J. K.
, 1999, “
Toyota’s Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
,
40
(
2
), pp.
67
83
.
9.
Chang
,
T. S.
,
Ward
,
A. C.
,
Lee
,
J.
, and
Jacox
,
E. H.
, 1994, “
Conceptual Robustness in Simultaneous Engineering
: An Extension of Taguchi’s Parameter Design,”
Res. Eng. Des.
,
6
, pp.
211
222
.
10.
Chen
,
W.
, and
Lewis
,
K.
, 1999, “
A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
,
37
(
8
), pp.
982
989
.
11.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
, 2001, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
1
10
.
12.
Liu
,
H.
,
Chen
,
W.
,
Scott
,
M. J.
, and
Qureshi
,
K.
, 2008, “
Determination of Ranged Sets of Design Specifications by Incorporating Design-Space Heterogeneity
,”
Eng. Optimiz.
,
40
(
11
), pp.
1011
1029
.
13.
Antonsson
,
E. K.
, and
Otto
,
K. N.
, 1995, “
Imprecision in Engineering Design
,”
ASME J. Mech. Des.
,
117
(
2
), pp.
25
32
.
14.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 1996, “
Formalisms for Negotiation in Engineering Design
,”
ASME DETC/CIE Design Theory and Methodology Conference
, Paper No. DETC96/DTM1525.
15.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
, 1997, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
, pp.
1
23
.
16.
Simpson
,
T. W.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F. A. C.
, 2008, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come—Or Not
,”
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Victoria, British Columbia, Canada, Paper No. AIAA
2008
502
.
17.
Lewis
,
K.
, and
Mistree
,
F.
, 1998, “
Collaborative, Sequential and Isolated Decisions in Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
643
652
.
18.
Hernandez
,
G.
,
Seepersad
,
C. C.
, and
Mistree
,
F.
, 2002, “
Designing for Maintenance: A Game Theoretic Approach
,”
Eng. Optimiz.
,
34
(
6
), pp.
561
577
.
19.
Panchal
,
J. H.
,
Fernandez
,
M. G.
,
Allen
,
J. K.
,
Paredis
,
C. J. J.
, and
Mistree
,
F.
, 2005, “
An Interval-Based Focalization Method for Decision-Making in Decentralized, Multi-Functional Design
,”
ASME IDETC/CIE Advances in Design Automation Conference
, Long Beach, CA, Paper No. DETC 2005–85322.
20.
Xiao
,
A.
,
Zeng
,
S.
,
Allen
,
J. K.
,
Rosen
,
D. W.
, and
Mistree
,
F.
, 2005, “
Collaborative Multidisciplinary Decision Making Using Game Theory and Design Capability Indices
,”
Res. Eng. Des.
,
16
(
1–2
), pp.
57
72
.
21.
Fernandez
,
M. G.
, 2006,
“A Framework for Agile Collaboration in Engineering
,” Ph.D. dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
22.
Panchal
,
J. H.
,
Fernandez
,
M. G.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2007, “
Interval-Based Constraint Satisfaction (IBCS) Method for Decentralized, Collaborative Multifunctional Design
,”
Concurr. Eng.: Res. Appl.
,
15
(
3
), pp.
309
323
.
23.
Lottaz
,
C.
,
Smith
,
I. F. C.
,
Robert-Nicoud
,
Y.
, and
Faltings
,
B. V.
, 2000, “
Constraint-Based Support for Negotiation in Collaborative Design
,”
Artif. Intell. Eng.
,
14
, pp.
261
280
.
24.
Shahan
,
D.
, and
Seepersad
,
C. C.
, 2010, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME IDETC/CIE Design Automation Conference
, Montreal, Quebec, Canada, Paper No. DETC2010–28724.
25.
Shahan
,
D.
, 2010, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,” Ph.D. dissertation, University of Texas at Austin, Austin.
26.
Pearl
,
J.
, 1988,
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
,
2nd ed.
,
Morgan Kauffman Publishers, Inc.
,
San Francisco
.
27.
Parzen
,
E.
, 1962, “
On Estimation of Probability Density Function and Mode
,” ”
Ann. Math. Stat.
,
33
, pp.
1065
1076
.
28.
Silverman
,
B. W.
, 1986,
Density Estimation
,
Chapman and Hall
,
London
.
29.
Scott
,
D. W.
, 1992,
Multivariate Density Estimation
,
John Wiley & Sons, Inc
.,
New York
.
30.
Ivezic
,
N.
, and
Garret
,
J. H.
, 1998, “
Machine Learning for Simulation-Based Support of Early Collaborative Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
12
, pp.
123
139
.
31.
Xiang
,
Y.
,
Chen
,
J.
, and
Deshmukh
,
A.
, 2004, “
A Decision-Theoretic Graphical Model for Collaborative Design on Supply Chains
,”
Lect. Notes Comput. Sci.
,
3060
, pp.
355
369
.
32.
Hofmann
,
R.
, and
Tresp
,
V.
, 1995, “
Discovering Structure in Continuous Variables Using Bayesian Networks
,”
Advances in Neural Information Processing Systems 8
,
D. S.
Touretzsky
,
M. C.
Mozer
, and
M.
Hasselmo
, eds.,
MIT Press
,
Cambridge, MA
.
33.
John
,
G. H.
, and
Langley
,
P.
, 1995, “
Estimating Continuous Distributions in Bayesian Classifiers
,”
Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence
,
Morgan Kauffman Publishers
,
San Mateo
.
34.
Bosman
,
P. A. N.
, and
Thierens
,
D.
, 2000, “
IDEAs Based on the Normal Kernels Probability Density Function,” Utrecht University
, Technical Report No. UU-CS-2000–15.
35.
Perez
,
A.
,
Larranga
,
P.
, and
Inza
,
I.
, 2009, “
Bayesian Classifiers Based on Kernel Density Estimation: Flexible Classifiers
,”
Int. J. Approx. Reason.
,
50
, pp.
341
362
.
36.
Dudda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
, 2001,
Pattern Classification
,
2nd ed.
,
John Wiley & Sons , Inc.
,
New York
.
37.
Jain
,
A. K.
, and
Ramaswami
,
M. D.
, 1988, “
Classifier Design With Parzen Windows
,”
Pattern Recognition and Artificial Intelligence
,
E. S.
Gelsema
, and
L. N.
Kanal
, eds.,
Elsevier Science Publishers B. V.
,
North-Holland
.
38.
Siminoff
,
J. S.
, 1996,
Smoothing Methods in Statistics
,
Springer-Verlag
,
New York, NY
.
39.
Halton
,
J. H.
, 1960, “
On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals
,”
Numer. Math.
,
2
, pp.
84
90
.
40.
Juvinall
,
R. C.
, and
Marshak
,
K. M.
, 2000,
Fundamentals of Machine Component Design
,
3rd ed.
,
John Wiley & Sons, Inc.
,
New York
.
41.
Hammersley
,
J. M.
, 1960, “
Monte Carlo Methods for Solving Multivariable Problems
,”
Ann. N.Y. Acad. Sci.
,
86
, pp.
844
874
.
42.
Abott
,
I. H.
, and
von Doenhoff
,
A. E.
, 1959,
Theory of Wing Sections: Including a Summary of Airfoil Data
,
Dover Publications, Inc.
,
New York
.
43.
Katz
,
J.
, and
Plotkin
,
A.
, 2002,
Low Speed Aerodynamics
,
Cambridge University Press
,
Cambridge
.
44.
Moran
,
J.
, 1984,
An Introduction to Theoretical and Computational Aerodynamics
,
John Wiley & Sons
,
New York
.
45.
Cook
,
R. D.
, and
Young
,
W. C.
, 1999,
Advanced Mechanics of Materials
,
2nd ed.
,
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
.
46.
Raymer
,
D. P.
, 2006,
Aircraft Design: A Conceptual Approach
,
4th ed.
,
AIAA, Inc.
,
Reston, VA
.
47.
Hoerner
,
S. F.
, 1965, Fluid Dynamic Drag, published by the author, Midland Park, NJ.
You do not currently have access to this content.