In this paper, two second-order methods are proposed for reliability analysis. First, general random variables are transformed to standard normal random variables. Then, the limit-state function is additively decomposed into one-dimensional functions, which are then expanded at the mean-value point to second-order terms. The approximated limit-state function becomes the sum of independent variables following noncentral chi-square distributions or normal distributions. The first method computes the probability of failure by the saddle-point approximation. If a saddle-point does not exist, the second method is then used. The second method approximates the limit-state function by a quadratic function with independent variables following normal distributions with the same variances. This treatment leads to a quadratic function that follows a noncentral chi-square distribution. These methods generally produce more accurate reliability approximations than the first-order reliability method (FORM) with 2n + 1 function evaluations, where n is the dimension of the problem. The effectiveness of the proposed methods is demonstrated with three examples, and the proposed methods are compared with the first- and second-order reliability methods (SROMs).

References

References
1.
Apostolakis
,
G.
, 1990, “
The Concept of Probability in Safety Assessments of Technological Systems
,”
Science
,
250
(
4986
), pp.
1359
1364
.
2.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2001,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
3.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.
4.
Mailhot
,
A.
, and
Villeneuve
,
J. P.
, 2003, “
Mean-Value Second-Order Uncertainty Analysis Method: Application to Water Quality Modeling
,”
Adv. Water Res.
,
26
(
5
), pp.
491
499
.
5.
Seo
,
H. S.
, and
Kwak
,
B. M.
, 2002, “
Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information
,”
Int. J. Prod. Res.
,
40
(
4
), pp.
931
944
.
6.
Putko
,
M. M.
,
Newman
,
P. A.
,
Taylor
,
A. C.
, III
, and
Green
,
L. L.
, 2002, “
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
60
69
.
7.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Hatftka
,
R. T.
, and
Rosca
,
R.
, 2004, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
386
394
.
8.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
An Investigation of Nonlinearity of Reliability Based Design Optimization Approaches
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
403
411
.
9.
Wu
,
Y. T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
, 2001, “
Safety-Factor Based Approach for Probabilistic-Based Design Optimization
,”
Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference and Exhibit
, April 16–19, 2001, Seattle, Washington, DC.
10.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
562
570
.
11.
Taguchi
,
G.
, 1993, “
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,” ASME, New York.
12.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment for Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
13.
Creveling
,
C. M.
,
Slutsky
,
J. L.
, and
Antis
,
D.
, 2003,
Design for Six Sigma: In Technology and Product Development
,
Prentice Hall
,
Englewood Cliffs, NJ
.
14.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
ASCE J. Eng. Mech. Div.
,
100
, pp.
111
121
.
15.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinomial Integrals
,”
J. Eng. Mech.
,
110
(
3
), pp.
357
367
.
16.
Du
,
X.
, and
Sudjianto
,
A.
, 2004, “
First Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.
17.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advance Probabilistic Analysis Method for Implicit Performance Function
,”
AIAA J.
,
28
(
9
), pp.
1663
1669
.
18.
Wu
,
Y. T.
, and
Wirsching
,
P. H.
, 1987, “
New Algorithm for Structural Reliability Estimation
,”
J. Eng. Mech.
,
113
(
9
), pp.
1319
1336
.
19.
Chen
,
X.
, and
Lind
,
N. C.
, 1983, “
Fast Probability Integration by Three-Parameter Normal Tail Approximation
,”
Struct. Safety
,
1
(
1
), pp.
169
176
.
20.
Wei
,
D.
, and
Rahman
,
S.
, 2007, “
Structural Reliability Analysis by Univariate Decomposition and Numerical Integration
,”
Probab. Eng. Mech.
,
22
(
1
), pp.
27
38
.
21.
Huang
,
B.
, and
Du
,
X.
, 2006, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
.
22.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
, 2008, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
117
130
.
23.
Du
,
X.
, and
Chen
,
W.
, 2001, “
A Most Probable Point Based Method for Uncertainty Analysis
,”
J. Des. Manuf. Autom.
,
1
(
1
), pp.
47
66
.
24.
Huang
,
B.
, and
Du
,
X.
, 2008, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Safety
,
93
, pp.
325
336
.
25.
Zhang
,
J.
, and
Du
,
X.
, 2010, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.
26.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Reliability Assessment Using Stochastic Finite Element Analysis
,
Wiley
,
New York
.
27.
Melchers
,
R. E.
, 1999,
Structural Reliability Analysis and Prediction
,
Wiley
,
Chichester, England
.
28.
Demiralp
,
M.
, 2009, “
High Dimensional Model Representation Supported by Products of Univariate Functions
,”
Int. Conf. Num. Anal. Appl. Math.
,
1168
, pp.
420
423
.
29.
Rahman
,
S.
, and
Xu
,
H.
, 2004, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
30.
Xu
,
H.
, and
Rahman
,
S.
, 2004, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
,
61
(
12
), pp.
1992
2019
.
31.
Yook
,
S.
,
Min
,
J.
,
Kim
,
D. H.
, and
Choi
,
D. H.
, 2009, “
Reliability Analysis Using Dimension Reduction Method With Variable Sampling Points
,”
Trans. Korean Soc. Mech. Eng., A
,
33
(
9
), pp.
870
877
.
32.
Rahman
,
S.
, and
Wei
,
D.
, 2006, “
A Univariate Approximation at Most Probable Point for Higher-Order Reliability Analysis
,”
Int. J. Solids Struct.
,
43
(
9
), pp.
2820
2839
.
33.
Du
,
X.
, 2010, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
,
42
(
2
), pp.
193
208
.
34.
Wang
,
Z.
,
Huang
,
H.
, and
Du
,
X.
, 2010, “
Optimal Design Accounting for Reliability, Maintenance, and Warranty
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011007
.
35.
Wang
,
Z.
,
Huang
,
H.
, and
Liu
,
Y.
, 2010, “
A Unified Framework for Integrated Optimization Under Uncertainty
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051008
.
36.
Daniels
,
H. E.
, 1954, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
,
25
, pp.
470
472
.
37.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1981, “
Non-Normal Dependent Vectors in Structural Safety
,”
ASCE J. Eng. Mech. Div.
,
107
(
6
), pp.
1227
1238
.
38.
Rosenblatt
,
M.
, 1952, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
39.
Lugannani
,
R.
, and
Rice
,
S. O.
, 1980, “
Saddle Approximation for the Distribution of the Sum of Independent Random Variables
,”
Adv. Appl. Probab.
,
12
, pp.
475
490
.
You do not currently have access to this content.