This paper presents a symbolic formulation for analytical compliance analysis and synthesis of flexure mechanisms with serial, parallel, or hybrid topologies. Our approach is based on the screw theory that characterizes flexure deformations with motion twists and loadings with force wrenches. In this work, we first derive a symbolic formulation of the compliance and stiffness matrices for commonly used flexure elements, flexure joints, and simple chains. Elements of these matrices are all explicit functions of flexure parameters. To analyze a general flexure mechanism, we subdivide it into multiple structural modules, which we identify as serial, parallel, or hybrid chains. We then analyze each module with the known flexure structures in the library. At last, we use a bottom-up approach to obtain the compliance/stiffness matrix for the overall mechanism. This is done by taking appropriate coordinate transformation of twists and wrenches in space. Four practical examples are provided to demonstrate the approach. A numerical example is employed to compare analytical compliance models against a finite element model. The results show that the errors are sufficiently small (2%, compared with finite element (FE) model), if the range of motion is limited to linear deformations. This work provides a systematical approach for compliance analysis and synthesis of general flexure mechanisms. The symbolic formulation enables subsequent design tasks, such as compliance synthesis or sensitivity analysis.

References

References
1.
Smith
,
S. T.
, 2000,
Flexure: Element of Elastic Mechanisms
,
CRC Press LLC
,
London, United Kingdom
.
2.
Smith
,
S. T.
, and
Chetwynd
,
D. G.
, 1992,
Foundations of Ultra-Precision Mechanism Design
,
CRC Press LLC
,
London, UK
.
3.
Culpepper
,
M. L.
, and
Anderson
,
G.
, 2004, “
Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism
,”
Precis. Eng.
,
28
(
4
), pp.
469
482
.
4.
Dagalakis
,
N. G.
, and
Amatucci
,
E.
, 2001, “
Kinematic Modeling of a 6 Degree of Freedom Tri-Stage Micro-Positioner
,”
Proceedings of the American Society for Precision Engineering 16th Annual Meeting
,
Crystal City, VA
, Nov. 10–15, pp.
200
203
.
5.
Aguirre
,
A. D.
,
Hertz
,
P. R.
,
Chen
,
Y.
,
Fujimoto
,
J. G.
,
Piyawattanametha
,
W.
,
Fan
,
L.
, and
Wu
,
M. C.
, 2007, “
Two-Axis MEMS Scanning Catheter for Ultrahigh Resolution Three-Dimensional and En Face Imaging
,”
Opt. Express
,
15
(
5
), pp.
2445
2453
.
6.
Henein
,
S.
,
Frommherz
,
U.
,
Betemps
,
R.
,
Kalt
,
H.
,
Ellenberger
,
U.
,
Flechsig
,
U.
, and
Raabe
,
J.
, 2007, “
Mechanical Design of a Spherical Grating Monochromator for the Microspectroscopy Beamline Pollux at the Swiss Light Source
,”
AIP Conf. Proc.
,
879
(
1
), pp.
643
646
.
7.
Dimentberg
,
F.
, 1965, “
The Screw Calculus and Its Applications in Mechanics
,” Foreign Technology Division, Wright-Patterson Air Force Base, OH, Technical Report No. FTD-HT-23–1632-67.
8.
Ball
,
R. S.
, 1998,
The Theory of Screws
,
Cambridge University Press
,
Cambridge, England
(Originally published in 1876 and revised by the author in 1900, now reprinted with an introduction by
H.
Lipkin
and
J.
Duffy
).
9.
Loncaric
,
J.
, 1987, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Rob. Autom.
,
3
(
6
), pp.
567
572
.
10.
Lipkin
,
H.
, and
Patterson
,
T.
, 1992, “
Geometric Properties of Modelled Robot Elasticity: Part I—Decomposition
,”
Proceedings of ASME Design Technical Conferences
, DE-Vol.
45
, pp.
187
193
.
11.
Lipkin
,
H.
, and
Patterson
,
T.
, 1992, “
Geometric Properties of Modelled Robot Elasticity: Part II—Decomposition
,”
Proceedings of ASME Design Technical Conferences
, DE-Vol.
45
, pp.
179
185
.
12.
Patterson
,
T.
, and
Lipkin
,
H.
, 1993, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
576
580
.
13.
Selig
,
J.
, and
Ding
,
X.
, 2001, “
A Screw Theory of Static Beams
,”
Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
1
, pp.
312
317
.
14.
Selig
,
J. M.
, and
Ding
,
X.
, 2009, “
A Screw Theory of Timoshenko Beams
,”
ASME J. Appl. Mech.
,
76
(
3
),
031003
.
15.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
16.
Lipkin
,
H.
, and
Duffy
,
J.
, 1985, “
The Elliptic Polarity of Screws
,”
ASME J. Mech., Transm., Autom. Des.
,
107
(
3
), pp.
377
386
.
17.
Mises
,
R. V.
, 1924, “
Motorrechnung, ein neues hilfsmittel der mechanik
,”
ZAMM—J. Appl. Math. Mech.(Zeitschrift fr Angewandte Mathematik und Mechanik
), 4(2), pp.
155
181
. (English Translation by
Baker
,
E. J.
, and
Wohlhart
,
K.
, 1996,
Motor Calculus, A New Theoretical Device for Mechanics
,
Institute for Mechanics, University of Technology Graz
,
Austria
).
18.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
, 2007, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
19.
Dai
,
J. S.
, and
Ding
,
X.
, 2006, “
Compliance Analysis of a Three-Legged Rigidly-Connected Platform Device
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
755
764
.
20.
Patil
,
C. B.
,
Sreenivasan
,
S. V.
, and
Longoria
,
R. G.
, 2008, “
Analytical and Experimental Characterization of Parasitic Motion in Flexure-Based Selectively Compliant Precision Mechanisms
,”
Proceedings of the ASME IDETC/CIE
, pp.
393
404
.
21.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Su
,
H.
, 2009, “
The Modeling of Cartwheel Flexural Hinges
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1900
1909
.
22.
Awtar
,
S.
, and
Sen
,
S.
, 2010, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
23.
Awtar
,
S.
, and
Sen
,
S.
, 2010, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
24.
Her
,
I.
, and
Midha
,
A.
, 1987, “
A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis
,”
ASME J. Mech., Transm., Autom. Des.
,
109
(
3
), pp.
348
355
.
25.
Midha
,
A.
,
Murphy
,
M. D.
, and
Howell
,
L. L.
, 1997, “
Compliant Constant-Force Mechanism and Devices Formed Therewith
,” U.S. Patent and Trademark Office, Washington, DC, U.S. Patent No. 5,649,454.:
26.
Huang
,
S.
, and
Schimmels
,
J. M.
, 1998, “
The Bounds and Realization of Spatial Stiffnesses Archieved With Simple Springs Connected in Parallel
,”
IEEE Trans. Rob. Autom.
,
14
(
3
), pp.
466
475
.
27.
Huang
,
S.
, and
Schimmels
,
J. M.
, 2000, “
The Bounds and Realization of Spatial Compliance Archieved With Simple Serial Elastic Mechanisms
,”
IEEE Trans. Rob. Autom.
,
16
(
1
), pp.
99
103
.
28.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y.-M.
, 2006, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
542
550
.
29.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
, 2011, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011001
.
30.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
, 2009, “
Design Synthesis of 2-d Compliant Mechanisms Utilizing Serial Concatenation of Building Blocks
,”
ASME Conference Proceedings
, pp.
299
312
.
31.
Hartmann
,
F.
, and
Katz
,
C.
, 2007,
Structural Analysis With Finite Elements
,
2nd ed.
,
Springer
,
New York
.
32.
Kassimali
,
A.
, 2011,
Matrix Analysis of Structures
,
2nd ed.
,
CL-Engineering
,
Stamford, CT
.
33.
Petri
,
P. A.
, 2002, “
A Continuum Mechanic Design Aid for Non-Planar Compliant Mechanisms
,” Master’s thesis, MIT, Cambridge, MA.
34.
Selig
,
J.
, 1996,
Geometrical Methods in Robotics
,
Springer Verlag
,
New York
.
35.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
36.
Young
,
W. C.
, and
Budynas
,
R. G.
, 2001,
Roark’s Formulas for Stress and Strain
,
7th ed.
,
McGraw-Hill
,
New York
.
37.
Su
,
H.-J.
, 2011, “
Mobility Analysis of Flexure Mechanisms Via Screw Algebra
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041010
.
38.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME Press
,
New York
.
39.
Zhang
,
S.
, and
Fasse
,
E. D.
, 2001, “
A Finite-Element-Based Method to Determine the Spatial Stiffness Properties of a Notch Hinge
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
141
147
.
40.
Lobontiu
,
N.
, 2003,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
, London, UK.
41.
Yong
,
Y. K.
,
Lu
,
T.-F.
, and
Handley
,
D. C.
, 2008, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
(
2
), pp.
63
70
.
42.
Ding
,
X.
, and
Selig
,
J. M.
, 2004, “
On the Compliance of Coiled Springs
,”
Int. J. Mech. Sci.
,
46
(
5
), pp.
703
727
.
43.
Zhang
,
S.
, 1999, “
Lumped-Parameter Modelling of Elastically Coupled Bodies: Derivation of Constitutive Equations and Determination of Stiffness Matrices
,” Ph.D. thesis, The University of Arizona, Tucson, AZ
44.
Fasse
,
E. D.
, and
Breedveld
,
P. C.
, 1998, “
Modeling of Elastically Coupled Bodies: Part II—Exponential and Generalized Coordinate Methods
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
4
), pp.
501
506
.
You do not currently have access to this content.