A major challenge in multidisciplinary system design is predicting the effects of design decisions at the point these decisions are being made. Because decisions at the beginning of system design, when the least is known about the new system, have the greatest impact on its final behavior, designers are increasingly interested in using compositional system models (system models created from independent models of system components) to validate design decisions early in and throughout system design. Compositional system models, however, have several failure modes that often result in infeasible or failed model evaluation. In addition, these models change frequently as designs are refined, changing the model domain (set of valid inputs and states). To compute valid results, the system model inputs and states must remain within this domain throughout simulation. This paper develops an algorithm to efficiently quantify the system model domain. To do this, we (1) present a formulation for system model feasibility and identify types of system model failures, (2) develop a design space exploration algorithm that quantifies the system model domain, and (3) illustrate this algorithm using a solar-powered unmanned aerial vehicle model. This algorithm enables systematic improvements of compositional system model feasibility.

References

References
1.
DARPA
,
T. T. O.
, 2009, “
META
,”
DARPA Tactical Technology Office
, Technical Report No. DARPA-BAA-10-21.
2.
Gray
,
J.
,
Moore
,
K. T.
, and
Naylor
,
B. A.
, 2010, “
OpenMDAO: An Open Source Framework for Multidisciplinary Analysis and Optimization
,” AIAA/ISSMO Multidisciplinary Analysis Optimization Conference Proceedings.
3.
Hashemi
,
A.
, 2008, “
Integrated Multidisciplinary Modeling, Virtual Design and Innovation
,”
Proceedings of Advanced Technology Center Colloquium
,
Lockheed Martin
.
4.
Cramer
,
E. J.
, 2010, “
MDO is a State of Mind
,”
Proceedings of National Science Foundation Workshop on the Future of Multidisciplinary Design Optimization: Advancing the Design of Complex Systems
,
National Science Foundation
.
5.
Hazelrigg
,
G. A.
, 2003, “
Thoughts on Model Validation for Engineering Design
,”
Proceedings of the ASME Design Engineering Technical Conference
, Vol.
3
, pp.
373
380
.
6.
Davis
,
M. D.
,
Signal
,
R.
, and
Weyuker
,
E. J.
, 1994,
Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science
,
Morgan Kauffman
,
San Francisco, CA
.
7.
Cellier
,
F. E.
, and
Koffman
,
E.
, 2006,
Continuous System Simulation
,
Springer
,
New York, NY
.
8.
Meyer
,
A.
, 2004, “
Methods for Determining the Validity of a Model
,”
Principles of Functional Verification
,
Newnes
,
Burlington
, pp.
21
48
.
9.
Abadi
,
M.
, and
Lamport
,
L.
, 1993, “
Composing Specifications
,”
ACM Trans. Program. Lang. Syst.
,
15
, p.
73
.
10.
Segura
,
S.
,
Hierons
,
R. M.
,
Benavides
,
D.
, and
Ruiz-Corts
,
A.
, 2011, “
Automated Metamorphic Testing on the Analyses of Feature Models
,”
Inf. Softw. Technol.
,
53
(
3
), pp.
245
258
.
11.
Mosterman
,
P. J.
, and
Vangheluwe
,
H.
, 2004, “
Computer Automated Multi-Paradigm Modeling: An Introduction
,”
Simulation
,
80
(
9
), pp.
433
450
.
12.
Shaja
,
A.
, and
Sudhakar
,
K.
, 2010, “
Optimized Sequencing of Analysis Components in Multidisciplinary Systems
,”
Res. Eng. Des.
,
21
, pp.
173
187
.
13.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
14.
Kleijnen
,
J. P. C.
, and
van Beers
,
W. C. M.
, 2004, “
Application-Driven Sequential Designs for Simulation Experiments: Kriging Metamodelling
,”
J. Oper. Res. Soc.
,
55
(
8
), pp.
876
883
.
15.
Xiong
,
Y.
,
Chen
,
W.
, and
Tsui
,
K.
, 2008, “
A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling
,”
ASME J. Mech. Des.
,
130
(
11
), p.
111401
.
16.
Shan
,
S.
, and
Wang
,
G. G.
, 2011, “
Turning Black-Box Functions into White Functions
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031003
.
17.
Huang
,
Y.
, and
Chan
,
K.
, 2010, “
A Modified Efficient Global Optimization Algorithm for Maximal Reliability in a Probabilistic Constrained Space
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061002
.
18.
Devanathan
,
S.
, and
Ramani
,
K.
, 2010, “
Creating Polytope Representations of Design Spaces for Visual Exploration Using Consistency Techniques
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081011
.
19.
Malak
,
R. J.
, Jr.
, and
Paredis
,
C. J. J.
, 2010, “
Using Support Vector Machines to Formalize the Valid Input Domain of Predictive Models in Systems Design Problems
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101001
.
20.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
, 2007, “
A Network Approach to Define Modularity of Components in Complex Products
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1118
1129
.
21.
Larson
,
B.
, and
Mattson
,
C. A.
, 2010, “
Developing System Behavioral Models by Integrating Discipline Specific Models
,”
Proceedings of Structures, Structural Dynamics, and Materials Conference Proceedings
, AIAA.
22.
Zeigler
,
B. P.
,
Praehofer
,
H.
, and
Kim
,
T. G.
, 2000,
Theory of Modeling and Simulation
,
2nd ed.
,
Academic Press
,
San Diego, CA
.
23.
Khalil
,
H. K.
, 1996,
Nonlinear Systems
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
IEEE, S. I. S. C., 2000, “
IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) Framework and Rules
,” IEEE, New York, NY.
25.
Oses
,
N.
,
Pidd
,
M.
, and
Brooks
,
R. J.
, 2004, “
Critical Issues in the Development of Component Based Discrete Simulation
,”
Simul. Model. Pract. Theory
,
121
(
7–8
), pp.
495
514
.
26.
Emanuelsson
,
P.
, and
Nilsson
,
U.
, 2008, “
A Comparative Study of Industrial Static Analysis Tools
,”
Electron. Notes Theor. Comput. Sci.
,
217
, pp.
5
21
(
Proceedings of the 3rd International Workshop on Systems Software Verification (SSV 2008))
.
27.
Larson
,
B. J.
,
Anderson
,
T. V.
, and
Mattson
,
C. A.
, 2010, “
System Behavioral Model Accuracy for Concurrent Design and Modeling
,”
Proceedings of 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference Proceedings, AIAA
.
28.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
, 2000, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
29.
Isaaks
,
E. H.
, and
Srivastava
,
R. M.
, 1989,
Applied Geostatistics
,
Oxford University Press
,
New York
.
30.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
, 2002, “
DACE, a Matlab Kriging Toolbox
,”
Technical University of Denmark, Kgs. Lyngby, Denmark
, Technical Report No. IMM-TR-2002-12.
31.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
, 2008,
Digital Image Processing
,
3rd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.