This paper presents a model to predict the crack formation fatigue lives of spur gear contacts operating under mixed lubrication conditions where surface roughnesses introduce intermittent metal-to-metal contacts and severe stress concentrations. The proposed model consists of several submodels, including (i) a gear load distribution model to determine the normal tooth force distribution along the tooth surface, incorporating any profile modifications and manufacturing deviations, (ii) a mixed elastohydrodynamic lubrication model customized to handle transient contact conditions of gears, (iii) a stress formulation that assumes the plane strain condition to compute the transient elastic stress fields on and below the tooth surface induced by the mixed lubrication surface pressure and shear stress distributions, and (iv) a multi-axial fatigue model to predict the crack nucleation life distribution. The proposed spur gear fatigue model is used to simulate the contacts of gear pairs having different surface roughness amplitudes. The predictions are compared to the measured gear fatigue stress-life data for each surface condition to assess the model accuracy in the prediction of the crack nucleation fatigue lives as well as the location of the critical failure sites.

References

References
1.
Li
,
S.
, and
Kahraman
,
A.
, 2010, “
A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,”
ASME J. Tribol.
,
132
(
1
), p.
011501
.
2.
Ringsberg
,
J. W.
,
Loo-Morrey
,
M.
,
Josefson
,
B. L.
,
Kapoor
,
A.
, and
Beynon
,
J. H.
, 2000, “
Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue
,”
Int. J. Fatigue
,
22
(
3
), pp.
205
215
.
3.
Ringsberg
,
J. W.
, 2001, “
Life Prediction of Rolling Contact Fatigue Crack Initiation
,”
Int. J. Fatigue
,
23
(
7
), pp.
575
586
.
4.
Šraml
,
M.
,
Flašker
,
J.
, and
Potrč
,
I.
, 2003, “
Numerical Procedure for Predicting the Rolling Contact Fatigue Crack Initiation
,”
Int. J. Fatigue
,
25
(
7
), pp.
585
595
.
5.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1999, “
A Model for Rolling Contact Fatigue
,”
Wear
,
224
(
1
), pp.
38
49
.
6.
Cheng
,
W.
,
Cheng
,
H. S.
,
Mura
,
T.
, and
Keer
,
L. M.
, 1994, “
Micromechanics Modeling of Crack Initiation Under Contact Fatigue
,”
ASME J. Tribol.
,
116
(
1
), pp.
2
8
.
7.
Glodež
,
S.
,
Winter
,
H.
, and
Stuwe
,
H. P.
, 1997, “
A Fracture Mechanics Model for the Wear of Gear Flanks by Pitting
,”
Wear
,
208
(
1–2
), pp.
177
183
.
8.
Glodež
,
S.
,
Flašker
,
J.
, and
Ren
,
Z.
, 1997, “
A New Model for the Numerical Determination of Pitting Resistance of Gear Teeth Flanks
,”
Fatigue Fract. Eng. Mater. Struct.
,
20
(
1
), pp.
71
83
.
9.
Flašker
,
J.
,
Fajdiga
,
G.
,
Glodež
,
S.
, and
Hellen
,
T. K.
, 2001, “
Numerical Simulation of Surface Pitting Due to Contact Loading
,”
Int. J. Fatigue
,
23
(
7
), pp.
599
605
.
10.
Davoli
,
P.
,
Bernasconi
,
A.
, and
Carnevali
,
L.
, 2003, “
Application of Multiaxial Criteria to Contact Fatigue Assessment of Spur Gears
,”
Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, September 2003, Chicago, IL, Paper No. DETC2003/PTG-48001.
11.
Qiao
,
H.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
, 2008, “
Comparison of Fatigue Model Results for Rough Surface Elastohydrodynamic Lubrication
,”
J. Eng. Tribol.
,
222
(
3
), pp.
381
393
.
12.
Snidle
,
R. W.
, and
Evans
,
H. P.
, 2010, “
Mixed Lubrication and Prediction of Surface Fatigue in Gear Tooth Contacts
,”
Proceedings of International Conference on Gears, Technical University of Munich
, October 2010,
VDI-Berichte
,
Dusseldorf, Germany
, VDI-Berichte No. 2108.
13.
Epstein
,
D.
,
Keer
,
L. M.
,
Wang
,
Q. J.
,
Cheng
,
H. S.
, and
Zhu
,
D.
, 2003, “
Effect of Surface Topography on Contact Fatigue in Mixed Lubrication
,”
Tribol. Trans.
,
46
(
4
), pp.
506
513
.
14.
Zhu
,
D.
,
Ren
,
N.
, and
Wang
,
Q. J.
, 2009, “
Pitting Life Prediction Based on a 3D Line Contact Mixed EHL Analysis and Subsurface von Mises Stress Calculation
,”
ASME J. Tribol.
,
131
(
4
), p.
041501
.
15.
Li
,
S.
, and
Kahraman
,
A.
, 2011, “
A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication Condition
,”
Int. J. Fatigue
,
33
(
3
), pp.
427
436
.
16.
Bluestein
,
J. M.
, 2008, “
An Experimental Study of the Impact of Various Tooth Surface Treatments on Spur Gear Pitting Life
,” M.S. thesis, The Ohio State University, Columbus, OH.
17.
Klein
,
M.
, 2009, “
An Experimental Investigation of the Engineered Surface Treatments on Gear Pitting Life
,” M.S. thesis, The Ohio State University, Columbus, OH.
18.
Rahman
,
Z.
,
Ohba
,
H.
,
Yoshioka
,
T.
, and
Yamamoto
,
T.
, 2009, “
Incipient Damage Detection and Its Propagation Monitoring of Rolling Contact Fatigue by Acoustic Emission
,”
Tribol. Int.
,
42
(
6
), pp.
807
815
.
19.
Hoffmann
,
G.
,
Hanejko
,
F. G.
, and
Slattery
,
R. H.
, 2006, “Crack Initiation and Propagation in RCF, a New Approach to Understanding Pitting Failure of Highly Loaded Gears,” SAE World Congress, Detroit.
20.
LDP
, 2011,
Gear Load Distribution Program
,
Gear and Power Transmission Research Laboratory, The Ohio State University
,
Columbus, OH
.
21.
Conry
,
T. F.
, and
Seireg
,
A.
, 1973, “
A Mathematical Programming Technique for the Evaluation of Load Distribution and Optimal Modifications for Gear Systems
,”
J. Eng. Ind.
,
95
(
11
), pp.
1115
1122
.
22.
Li
,
S.
, and
Kahraman
,
A.
, 2010, “
Prediction of Spur Gear Mechanical Power Losses Using a Transient Elastohydrodynamic Lubrication Model
,”
Tribol. Trans.
,
53
(
4
), pp.
554
563
.
23.
Li
,
S.
,
Vaidyanathan
,
A.
,
Harianto
,
J.
, and
Kahraman
,
A.
, 2009, “
Influence of Design Parameters on Mechanical Power Losses of Helical Gear Pairs
,”
J. Adv. Mech. Des., Syst., Manuf.
,
3
(
2
), pp.
146
158
.
24.
Zhu
,
D.
, 2007, “
On Some Aspects of Numerical Solutions of Thin-Film and Mixed Elastohydrodynamic Lubrication
,”
J. Eng. Tribol.
,
221
(
5
), pp.
561
579
.
25.
Johnson
,
K. J.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
26.
Doolittle
,
A. K.
, 1951, “
Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-Space
,”
J. Appl. Phys.
,
22
(
12
), pp.
1471
1475
.
27.
Wu
,
S.
, and
Cheng
,
H. S.
, 1991, “
A Friction Model of Partial-EHL Contacts and Its Application to Power Loss in Spur Gears
,”
Tribol. Trans.
,
34
(
3
), pp.
398
407
.
28.
Matake
,
T.
, 1977, “
An explanation of fatigue limit under combined stress
,”
Bull. JSME
,
20
(
141
), pp.
257
263
.
29.
McDiarmid
,
D. L.
, 1991, “
A General Criterion for High Cycle Multiaxial Fatigue Failure
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
(
4
), pp.
429
453
.
30.
McDiarmid
,
D. L.
, 1994, “
A Shear Stress Based Critical-Plane Criterion of Multiaxial Fatigue Failure for Design and Life Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
12
), pp.
1475
1484
.
31.
Susmel
,
L.
, and
Lazzarin
,
P.
, 2002, “
A Bi-Parametric Wohler Curve for High Cycle Multiaxial Fatigue Assessment
,”
Fatigue Fract. Eng. Mater. Struct.
,
25
(
1
), pp.
63
78
.
32.
Susmel
,
L.
, and
Lazzarin
,
P.
, 2003, “
A Stress-Based Method to Predict Lifetime Under Multiaxial Fatigue Loadings
,”
Fatigue Fract. Eng. Mater. Struct.
,
26
(
12
), pp.
1171
1187
.
33.
Liu
,
Y.
, and
Mahadevan
,
S.
, 2007, “
A Unified Multiaxial Fatigue Damage Model for Isotropic and Anisotropic Materials
,”
Int. J. Fatigue
,
29
(
2
), pp.
347
359
.
34.
Blok
,
H.
, 1963, “
Inverse Problems in Hydrodynamic Lubrication and Design Directives for Lubricated Flexible Surfaces
,”
Proceedings of the International Symposium on Lubrication and Wear
,
University of Houston
,
TX
.
You do not currently have access to this content.