In this paper, we set out to investigate the performances of some algorithms proposed in the gear literature for identifying the machine-tool settings required to obtain predesigned gear tooth surface topographies, or needed to compensate for flank form deviations of real teeth. For ease of comparison, the problem is formulated as a nonlinear least squares problem, and the most widely employed algorithms are derived as special cases. The algorithms included in the analysis are (i) one-step methods, (ii) iterative methods, and (iii) iterative methods with step control. The performance index is devised in their ability of returning practical solutions in the presence of (i) strong model nonlinearities, (ii) ill-conditioning of the sensitivity matrix, and (iii) demanding topographic shapes. Instrumental here is an original classification of topographic modifications as either “simple” or “complex,” based on the singular value decomposition (SVD) analysis of the sensitivity matrix. Some selected numerical examples demonstrate that iterative techniques with step control are the most convenient in terms of reliability and robustness of the obtained solutions. The generation process considered here is face-milling of hypoid gears, although the methodology is general enough to cope with any gear cutting/grinding method.

References

References
1.
Krenzer
,
T. J.
, and
Knebel
,
R.
, 1983, “
Computer Aided Inspection of Bevel and Hypoid Gears
,” SAE Paper No. 831266.
2.
Krenzer
,
T. J.
, 1984, “
Computer Aided Corrective Machine Settings for Manufacturing Bevel and Hypoid Gear Sets
,” AGMA Paper No. 84FTM4.
3.
Litvin
,
F. L.
,
Kuan
,
C.
,
Wang
,
J.
,
Handschuh
,
R.
,
Masseth
,
J.
, and
Maruyama
,
N.
, 1993, “
Minimization of Deviations of Gear Real Tooth Surfaces by Coordinate Measurements
,”
ASME J. Mech. Des.
,
115
, pp.
995
1001
.
4.
Visual Numerics, Inc.
, 2006,
IMSL Fortran Numerical Libraries—Version 6.0
,
Visual Numerics
,
Houston
.
5.
Lin
,
C.-Y.
,
Tsay
,
C.-B.
, and
Fong
,
Z.-H.
, 1998, “
Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears With Minimum Surface Deviation
,”
Mech. Mach. Theory
,
33
, pp.
785
803
.
6.
Shih
,
Y.-P.
, and
Fong
,
Z.-H.
, 2007, “
Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography
,”
ASME J. Mech. Des.
,
129
, pp.
1294
1302
.
7.
Shih
,
Y.-P.
, and
Fong
,
Z.-H.
, 2008, “
Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Generator
,”
ASME J. Mech. Des.
,
130
, p.
062604
.
8.
Shih
,
Y.-P.
, 2010, “
A Novel Ease-Off Flank Modification Methodology for Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1108
1124
.
9.
Gabiccini
,
M.
,
Artoni
,
A.
,
Di Puccio
,
F.
, and
Guiggiani
,
M.
, 2007, “
A Regularization Method for Hypoid Gear Synthesis Using the Invariant Approach
,”
12th IFToMM World Congress 2007
,
IFToMM, Besançon
.
10.
Hansen
,
P. C.
, 1997,
Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion,
SIAM
,
Philadelphia
.
11.
Gosselin
,
C.
,
Nonaka
,
T.
,
Shiono
,
Y.
,
Kubo
,
A.
, and
Tatsuno
,
T.
, 1998, “
Identification of the Machine Settings of Real Hypoid Gear Tooth Surface
,”
ASME J. Mech. Des.
,
120
, pp.
429
440
.
12.
Fan
,
Q.
,
DaFoe
,
R.
, and
Swanger
,
J.
, 2008, “
Higher-Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid gears
,”
ASME J. Mech. Des.
,
130
, p.
072601
.
13.
Fan
,
Q.
, 2010, “
Tooth Surface Error Correction for Face-Hobbed Hypoid Gears
,”
ASME J. Mech. Des.
,
132
, p.
011004
.
14.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Kieffer
,
J.
, and
Handschuh
,
R. F.
, 1991, “
Identification and Minimization of Deviations of Real Gear Tooth Surfaces
,”
ASME J. Mech. Des.
,
113
, pp.
55
62
.
15.
Lin
,
C.-Y.
,
Tsay
,
C.-B.
, and
Fong
,
Z.-H.
, 2001, “
Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears by Applying Optimization Techniques
,”
J. Mater. Process. Technol.
,
114
, pp.
22
35
.
16.
Artoni
,
A.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
, 2008, “
Nonlinear Identification of Machine Settings for Flank Form Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
130
, p.
112602
.
17.
Argyris
,
J.
,
Fuentes
,
A.
, and
Litvin
,
F.
, 2002, “
Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
1057
1095
.
18.
Fong
,
Z.-H.
, 2000, “
Mathematical Model of Universal Generator With Supplemental Kinematic Flank Correction Motions
,”
ASME J. Mech. Des.
,
122
, pp.
136
142
.
19.
Hutschenreiter
,
U.
, 1996, “
A New Method for Bevel Gear Tooth Flank Computation
,”
M.
Berz
,
C.
Bishof
,
G.
Corliss
,
A.
Griewank
(Eds.),
Computational Differentiation—Techniques, Applications and Tools
, SIAM Proceedings Series, SIAM, Philadelphia, PA, pp.
329
341
.
20.
Gleason Corporation, 2011, “
Computer Aided Gear Engineering (CAGETM)
,” last accessed 14 February, http://www.gleason.com/b_software_cage.html.
21.
Thomas
,
J.
, and
Vogel
,
O.
, 2005, “
6M Machine Kinematics for Bevel and Hypoid Gears
,”
VDI-Berichte
,
1
, pp.
435
451
.
22.
Litvin
,
F. L.
, and
Fuentes
,
A.
, 2004,
Gear Geometry and Applied Theory,
PTR Prentice Hall
,
Englewood Cliffs
.
23.
Gabiccini
,
M.
, 2009, “
A Twist Exponential Approach to Gear Generation With General Spatial Motions
,”
Mech. Mach. Theory
,
44
(
2
), pp.
382
400
.
24.
Strang
,
G.
, 1986,
Linear Algebra and Its Applications
,
3rd ed.
,
Harcourt Brace Jovanovich Publishers
,
San Diego
.
25.
Fan
,
Q.
, and
Dafoe
,
R. S.
, 2005, “
Development of Bevel Gear Face Hobbing Simulation and Software
,”
VDI-Berichte
,
1
, pp.
485
504
.
26.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization,
Springer Verlag
,
New York
.
27.
Conn
,
A. R.
,
Gould
,
N. I. M.
, and
Toint
,
P. L.
, 2000,
Trust-Region Methods,
SIAM
,
Philadelphia
.
28.
Stadtfeld
,
H. J.
, 1993,
Handbook of Bevel and Hypoid Gears,
Rochester Institute of Technology
,
Rochester
.
You do not currently have access to this content.