Usage context-based design (UCBD) is an emerging design paradigm where usage context is considered as a critical part of driving factors behind customers’ choices. Here, usage context is defined as all aspects describing the context of product use that vary under different use conditions and affect product performance and/or consumer preferences for the product attributes. In this paper, we propose a choice modeling framework for UCBD to quantify the impact of usage context on customer choices. We start with defining a taxonomy for UCBD. By explicitly modeling usage context’s influence on both product performances and customer preferences, a step-by-step choice modeling procedure is proposed to support UCBD. Two case studies, a jigsaw example with stated preference data and a hybrid electric vehicle example with revealed preference data, demonstrate the needs and benefits of incorporating usage context in choice modeling.

References

1.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
Trans. ASME J. Mech. Des.
,
122
(
4
), pp.
411
418
.
2.
Besharati
,
B.
,
Azarm
,
S.
, and
Farhang-Mehr
,
A.
, “
A Customer-Based Expected Utility Metric for Product Design Selection
,”
Proceedings of the 2002 ASME Design Engineering Technical Conferences and Computers in Engineering Conference.
3.
Wassenaar
,
H. J.
, and
Chen
,
W.
, 2003, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
490
497
.
4.
Michalek
,
J. J.
, 2005, “
Preference Coordination in Engineering Design Decision-Making
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
5.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
, 2005, “
Manufacturing Investment and Allocation in Product Line Design Decision Making
,”
Proceedings of the 2005 ASME Design Engineering Technical Conferences and Computers in Engineering Conference
,
Long Beach
,
CA
, DETC2005-84812.
6.
Kumar
,
D.
,
Kim
,
H.
, and
Chen
,
W.
, 2006, “
Multi-Level Optimization for Enterprise Driven Decision-Based Product Design
,”
Decision Making in Engineering Design
,
K.
Lewis
,
W.
Chen
, and
L.
Schmidt
, eds.,
ASME Press
,
New York
.
7.
Sullivan
,
E.
,
Ferguson
,
S.
, and
Donndelinger
,
J. A.
, 2011, “
Exploring Differences in Preference Heterogeneity Representation and Their Influence in Product Family Design
,”
Proceedings of the 2011 ASME Design Engineering Technical Conferences and Computers in Engineering Conference
,
Washington, DC
, DETC2011-48596.
8.
Turner
,
C.
,
Ferguson
,
S.
, and
Donndelinger
,
J. A.
, 2011, “
Exploring Heterogeneity of Customer Preference to Balance Commonality and Market Coverage
,”
Proceedings of the 2011 ASME Design Engineering Technical Conferences and Computers in Engineering Conference
,
Washington, DC
, DETC2011-48581.
9.
Frischknecht
,
B. D.
,
Whitefoot
,
K.
, and
Papalambros
,
P. Y.
, 2010, “
On the Suitability of Econometric Demand Models in Design for Market Systems
,”
ASME J. Mech. Des.
,
132
, p.
121007
.
10.
Shiau
,
C. S. N.
, and
Michalek
,
J. J.
, 2009, “
Should Designers Worry About Market Systems?
,”
ASME J. Mech. Des.
,
131
, p.
011011
.
11.
Michalek
,
J. J.
, 2004, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
,
126
, p.
1062
1070
.
12.
Michalek
,
J. J.
,
Ceryan
,
O.
, and
Papalambros
,
P. Y.
, 2006, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
,
128
, p.
1196
1204
.
13.
Williams
,
N.
,
Azarm
,
S.
, and
Kannan
,
P.
, 2008, “
Engineering Product Design Optimization for Retail Channel Acceptance
,”
ASME J. Mech. Des.
,
130
, p.
061402
.
14.
Ben-Akiva
,
M.
, and
Lerman
,
S. R.
, 1985,
Discrete Choice Analysis: Theory and Application to Travel Demand
,
MIT Press
,
Cambridge, MA
.
15.
Hausman
,
J.
, and
McFadden
,
D.
, 1984, “
Specification Tests for the Multinomial Logit Model
,”
Econometrica
,
52
(
5
), pp.
1219
1240
.
16.
Koppelman
,
F. S.
, and
Sethi
,
V.
, 2000, “
Closed Form Discrete Choice Models
,”
Handbook of Transport Modelling
, Pergamon, New York, Vol.
1
, pp.
211
222
.
17.
Train
,
K. E.
, 2003,
Discrete Choice Methods With Simulation
,
Cambridge University Press
,
Cambridge
.
18.
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
, and
Gomez-Levi
,
G.
, 2011, “
Understanding and Modelling Heterogeneity of Human Preferences for Engineering Design
,”
J. Eng. Des.
,
22
(
8
), pp.
583
601
.
19.
Belk
,
R.
, 1974, “
An Exploratory Assessment of Situational Effects in Buyer Behavior
,“
J. Mark. Res.
,
11
(
2
), pp.
156
163
.
20.
Dickson
,
P.
, 1982, “
Person-Situation: Segmentation’s Missing Link
,”
J. Mark.
,
46
(
4
), pp.
56
64
.
21.
De la Fuente
,
J.
, and
Guillén
,
M.
, 2005, “
Identifying the Influence of Product Design and Usage Situation on Consumer Choice
,”
Int. J. Mark. Res.
,
47
(
6
), p.
667
686
.
22.
Belk
,
R.
, 1975, “
Situational Variables and Consumer Behavior
,”
J. Consum. Res.
,
2
(
3
), pp.
157
164
.
23.
Stefflre
,
V.
, 1971,
New Products and New Enterprises: A Report of an Experiment in Applied Social Science
,
University of California
,
Irvine, CA
.
24.
Berkowitz
,
E.
,
Ginter
,
J.
, and
Talarzyk
,
W.
, “
An Investigation of the Effects of Specific Usage Situations on the Prediction of Consumer Choice Behavior
,”
Proceedings of Educators’ Contemporary Marketing Thought
,
B.
Greenberg
, and
D.
Bellenger
, eds.,
American Marketing Association
,
Chicago
, pp.
90
94
.
25.
Ulrich
,
K.
, and
Eppinger
,
S.
, 2003,
Product Design and Development
,
McGraw-Hill
,
New York
.
26.
Green
,
M. G.
,
Palani
,
R. P. K.
, and
Wood
,
K. L.
, “
Product Usage Context: Improving Customer Needs Gathering and Design Target Setting
,”
Proceedings of 2004 ASME Design Engineering Technical Conference
, DETC/DTM2004-57498.
27.
Green
,
M. G.
,
Tan
,
J.
,
Linsey
,
J. S.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
, “
Effects of Product Usage Context on Consumer Product Preferences
,”
Proceedings of 2005 IDETC/CIE Conference
, DETC2005-85438.
28.
Green
,
M. G.
,
Linsey
,
J. S.
,
Seepersad
,
C. C.
,
Wood
,
K. L.
, and
Jensen
,
D. J.
, “
Frontier Design: A Product Usage Context Method
,”
Proceedings of 2006 ASME Design Engineering Technical Conference
, DETC/DTM 2006-99608.
29.
He
,
L.
,
Chen
,
W.
, and
Conzelmann
,
G.
, 2011, “
On Usage Context of Hybrid Electric Vehicle in Choice Studies
,”
Proceedings of the 2011 ASME Design Engineering Technical Conferences and Computers in Engineering Conference
,
Washington, DC
, DETC2011-48385.
30.
Goldberg
,
P. K.
, 1995, “
Product Differentiation and Oligopoly in International Markets: The Case of the US Automobile Industry
,”
Econometrica
,
63
(
4
), pp.
891
951
.
31.
Simonson
,
I.
, and
Tversky
,
A.
, 1992, “
Choice in Context: Tradeoff Contrast and Extremeness Aversion
,”
J. Mark. Res.
,
29
(
3
), pp.
281
295
.
32.
Kroes
,
E. P.
, and
Sheldon
,
R. J.
, 1988, “
Stated Preference Methods: An Introduction
,”
J. Transp. Econ. Policy
,
22
(
1
), pp.
11
25
. Available at: http://www.jstor.org/stable/20052832http://www.jstor.org/stable/20052832.
33.
Samuelson
,
P. A.
, 1948, “
Consumption Theory in Terms of Revealed Preference
,”
Economica
,
15
(
60
), pp.
243
253
.
34.
Louviere
,
J. J.
,
Hensher
,
D. A.
, and
Swait
,
J. D.
, 2000,
Stated Choice Methods: Analysis and Application
,
Cambridge University Press
,
New York
.
35.
Hoyle
,
C.
,
Chen
,
W.
,
Ankenman
,
B.
, and
Wang
,
N.
, 2009, “
Optimal Experimental Design of Human Appraisals for Modeling Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
131
(
7
), pp.
98
107
.
36.
Yannou
,
B.
,
Wang
,
J.
, and
Yvars
,
P.
, 2010, “
Computation of the Usage Contexts Coverage of a Jigsaw With CSP Techniques
,” 2010
ASME Design Engineering Technical Conferences
,
Montreal
,
Canada
.
37.
McCullagh
,
P.
, 1980, “
Regression Models for Ordinal Data
,”
J. R. Stat. Soc. Ser. B (Methodol.
),
42
(
2
), pp.
109
142
. Available at: http://www.jstor.org/stable/2984952http://www.jstor.org/stable/2984952.
38.
Koppelman
,
F.
, and
Bhat
,
C.
, 2006, A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models, U.S. Department of Transportation.
39.
Hartigan
,
J. A.
, and
Wong
,
M. A.
, 1979, “
Algorithm AS 136: A k-Means Clustering Algorithm
,”
J. R. Stat. Soc., Ser. C, Appl. Stat.
,
28
(
1
), pp.
100
108
. Available at: http://www.jstor.org/stable/2346830http://www.jstor.org/stable/2346830.
40.
He
,
L.
, and
Chen
,
W.
, 2011, “
Usage Context-Based Choice Modeling for Hybrid Electric Vehicles
,”
International Conference on Engineering Design
,
Copenhagen
,
Denmark
, Contribution 155.
41.
Yannou
,
B.
,
Wang
,
J.
,
Rianantsoa
,
N.
,
Hoyle
,
C.
,
Drayer
,
M.
,
Chen
,
W.
,
Alizon
,
F.
, and
Mathieu
,
J.-P.
, 2009, “
Usage Coverage Model for Choice Modeling: Principles and Taxonomy
,”
2009 ASME Design Engineering Technical Conferences
,
San Diego
,
CA
.
42.
Corporation
,
S.
, 1996–2009,
STATASE 9.2
,
College Station
,
Texas
.
43.
Ehsani
,
M.
,
Gao
,
Y.
, and
Emadi
,
A.
, 2009, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC, Boca Raton, FL.
44.
Axsen
,
J.
,
Burke
,
A.
, and
Kurani
,
K.
, 2008,
Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology Circa 2008
,
Institute of Transportation Studies
,
University of California Davis, Davis, CA
.
45.
Shiau
,
C.
,
Samaras
,
C.
,
Hauffe
,
R.
, and
Michalek
,
J.
, 2009, “
Impact of Battery Weight and Charging Patterns on the Economic and Environmental Benefits of Plug-in Hybrid Vehicles
,”
Energy Policy
,
37
(
7
), pp.
2653
2663
.
46.
EPA, U. E. P. A., 2008, Fuel Economy Guide 2008. Available at: http://www.fueleconomy.gov/feg/feg2008.pdfhttp://www.fueleconomy.gov/feg/feg2008.pdf.
47.
He
,
L.
,
Hoyle
,
C.
, and
Chen
,
W.
, 2011, “
Examination of Customer Satisfaction Surveys in Choice Modelling to Support Engineering Design
,”
J. Eng. Des.
,
22
(
10
), pp.
669
687
.
48.
Hauser
,
J. R.
,
Toubia
,
O.
,
Evgeniou
,
T.
,
Befurt
,
R.
, and
Dzyabura
,
D.
, 2010, “
Disjunctions of Conjunctions, Cognitive Simplicity and Consideration Sets
,”
J. Mark. Res.
,
47
(
3
), pp.
485
496
.
You do not currently have access to this content.