Force regulation is a challenging problem for robot end-effectors when interacting with an unknown environment. It often requires sophisticated sensors with computerized control. This paper presents an adjustable constant-force mechanism (ACFM) to passively regulate the contact force of a robot end-effector. The proposed ACFM combines the negative stiffness of a bistable mechanism and positive stiffness of a linear spring to generate a constant-force output. Through prestressing the linear spring, the constant-force magnitude can be adjusted to adapt to different working environments. The ACFM is a monolithic compliant mechanism that has no frictional wear and is capable of miniaturization. We propose a design formulation to find optimal mechanism configurations that produce the most constant-force. A resulting force to displacement curve and maximal stress curve can be easily manipulated to fit a different application requirement. Illustrated experiments show that an end-effector equipped with the ACFM can adapt to a surface of variable height, without additional motion programming. Since sensors and control effort are minimized, we expect this mechanism can provide a reliable alternative for robot end-effectors to interact friendly with an environment.

References

References
1.
http://www.vulcanspring.com/
2.
http://www.ati-ia.com/
3.
Sönmez
,
Ü.
, 2007, “
Introduction to Compliant Long Dwell Mechanism Designs Using Buckling Beams and Arcs
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
831
843
.
4.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
, 2003, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
, pp.
1469
1487
.
5.
Jutte
,
C. V.
, and
Kota
,
S.
, 2008, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
),
081403
.
6.
Pedersen
,
C. B. W.
,
Fleck
,
N. A.
, and
Ananthasuresh
,
G. K.
, 2006, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1101
1112
.
7.
Berselli
,
G.
,
Vertechy
,
R.
,
Vassura
,
G.
, and
Castelli
,
V. P.
, 2009, “
Design of a Single-Acting Constant-Force Actuator Based on Dielectric Elastomers
,”
ASME J. Mech. Rob.
,
1
(
3
),
031007
.
8.
Nahar
,
D.
, and
Sugar
,
T. G.
, 2003,
Compliant Constant-Force Mechanism With a Variable Output for Micro/Macro Applications
,
IEEE ICRA
,
Taipei, Taiwan
.
9.
Alabuzhev
,
P.
,
Gritchin
,
A.
,
Kim
,
L.
,
Migirenko
,
G.
,
Chon
,
V.
, and
Stepanov
,
P.
, 1989,
Vibration Protecting and Measuring Systems With Quasi-Zero Stiffness
,
Hemisphere Publishing
,
New York
.
10.
Jenuwine
,
J. G.
, and
Midha
,
A.
, 1994, “
Synthesis of Single-Input and Multiple-Output Port Mechanisms With Springs for Specified Energy Absorption
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
937
943
.
11.
Nathan
,
R. H.
, 1985, “
A Constant Force Generation Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
,
107
, pp.
508
512
.
12.
Morsch
,
F. M.
, and
Herder
,
J. L.
, 2010, “
Design of a Generic Zero Stiffness Compliant Joint
,”
Proceedings of IDETC/CIE ASME
2010, DETC2010-28351.
13.
Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
, 2007, “
Gravity-Balanced Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Devices
,
1
, pp.
151
158
.
14.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
, 2009, “
Design of Perfectly Statically Balanced One-DOF Planar Linkages With Revolute Joints Only
,”
ASME J. Mech. Des.
,
131
(
5
),
051004
.
15.
Tolou
,
N.
,
Henneken
,
V. A.
, and
Herder
,
J. L.
, 2010, “
Statically Balanced Compliant Micro Mechanisms (SB-MEMS): Concepts and Simulation
,”
Proceedings of IDETC/CIE ASME
2010, DETC2010-28406.
16.
Meaders
,
J. C.
, and
Mattson
,
C. A.
, 2010, “
Optimization of Near-Constant Force Springs Subject to Mating Uncertainty
,”
Struct. Multidiscip. Optim.
,
41
(
1
), pp.
1
15
.
17.
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2006, “
Substantially Constant-Force Exercise Machine
,” U.S. Patent No. 7,060,012, B2.
18.
Jung
,
S.
,
Hsia
,
T. C.
, and
Bonitz
,
R. G.
, 2004, “
Force Tracking Impedance Control of Robot Manipulators Under Unknown Environment
,”
IEEE Trans. Control Syst. Technol.
,
12
(
3
), pp.
474
483
.
19.
Mallapragada
,
V.
,
Erol
,
D.
, and
Sarkar
,
N.
, 2007, “
A New Method of Force Control for Unknown Environments
,”
Int. J. Adv. Rob. Syst.
,
4
(
3
), pp.
313
322
. Available at: http://www.intechopen.com/journals/volume/issn/1729-8806/volume/4/number/3.
20.
Lan
,
C.-C.
,
Wang
,
J.-H.
, and
Chen
,
Y.-H.
, 2010, “
A Compliant Constant-Force Mechanism for Adaptive Robot End-Effector Operations
,”
IEEE ICRA
,
Anchorage
,
Alaska
.
21.
Todd
,
B.
,
Jensen
,
B. D.
,
Schultz
,
S. M.
, and
Hawkins
,
A. R.
, 2010, “
Design and Testing of a Thin-Flexure Bistable Mechanism Suitable for Stamping From Metal Sheets
,”
ASME J. Mech. Des.
,
132
(
7
),
071011
.
22.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
, 2011, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
),
051002
.
23.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
, 2011, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
),
081007
.
24.
Lan
,
C.-C.
, and
Cheng
,
Y.-J.
, 2008, “
Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
,
130
(
7
),
072304
.
25.
Cannon
,
B. R.
,
Lillian
,
T. D.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Linford
,
M. R.
, 2005, “
A Compliant End-Effector for Microscribing
,”
Precis. Eng.
,
29
, pp.
86
94
.
26.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
, 2005, “
Design of Large Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
You do not currently have access to this content.