Many structures in the real world show nonlinear responses. The nonlinearity may be due to some reasons, such as nonlinear material (material nonlinearity), large deformation of the structures (geometric nonlinearity), or contact between the parts (contact nonlinearity). Conventional optimization algorithms considering the nonlinearities are fairly difficult and expensive because many nonlinear analyses are required. It is quite difficult to perform topology optimization considering nonlinear static behavior because of the many design variables. In the current element density based topology optimization considering nonlinear behavior, low-density finite elements cause serious numerical problems due to excessive mesh distortion. Updating the material of the finite elements based on the density is considerably complicated because of the relationship between the element density and structural material. The equivalent static loads method for nonlinear static response structural optimization (ESLSO) has been proposed for size and shape optimization. The equivalent static loads (ESLs) are defined as the linear static load sets which generate the same displacement field from nonlinear static analysis. In this research, a new algorithm is proposed for topology optimization considering all kinds of nonlinearities by modifying the existing ESLSO. The new ESLSO can overcome the difficulties which may occur in topology optimization with nonlinear static behavior. A nonlinear static response optimization problem is converted to cyclic use of linear static response optimization with ESLs. Therefore, the new ESLSO can generate results of nonlinear static response topology optimization by using well established nonlinear static analysis and linear static response topology optimization methods. Four structural examples are demonstrated using the finite element method. Different kinds of nonlinearities are involved in each example.

References

References
1.
Park
,
G. J.
, 2007,
Analytic Methods for Design Practice
,
Springer
,
Germany
.
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2002,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Germany
.
3.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
4.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
, pp.
193
202
.
5.
GENESIS User’s Manual: Version 9.0
, 2009,
Vanderplaats Research and Development, Inc.
6.
MD R3 NASTRAN, User’s Guide
, 2008,
MSC Software Corp.
,
Santa Ana, CA
.
7.
Alair OptiStruct
,
Introduction to OptiStruct FEA Version 10.0
, 2009,
Altair Engineering, Inc.
,
MI
.
8.
Cook
,
R.
,
Malkus
,
D.
, and
Witt
,
R.
, 2001,
Concepts and Applications of Finite Element Analysis
,
John Wiley & Sons Inc.
,
New York
.
9.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2004,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley & Sons Inc.
,
New York
.
10.
Reddy
,
J. N.
, 2004,
An Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
,
NY
.
11.
Stegmann
,
J.
, and
Lund
,
E.
, 2005, “
Nonlinear Topology Optimization of Layered Shell Structures
,”
Struct. Multidiscip. Optim.
,
29
(
5
), pp.
349
360
.
12.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Non-linear Elastic Structures and Compliant Mechanisms
,”
Comp. Meth. Appl. Mech. Eng.
,
190
(
26/27
), pp.
3443
3459
.
13.
Yoon
,
G. H.
, and
Kim
,
Y. Y.
, 2005, “
Element Connectivity Parameterization for Topology Optimization of Geometrically Nonlinear Structures
,”
Int. J. Solids Struct.
,
42
(
7
), pp.
1983
2009
.
14.
Yoon
,
G. H.
,
Joung
,
Y. S.
, and
Kim
,
Y. Y.
, 2007, “
Optimal Layout Design of Three-Dimensional Geometrically Non-linear Structure Using the Element Connectivity Parameterization Method
,”
Int. J. Numer. Methods Eng.
,
69
(
6
), pp.
1278
1304
.
15.
Yoon
,
G. H.
, and
Kim
,
Y. Y.
, 2007, “
Topology Optimization of Material-Nonlinear Continuum Structures by the Element Connectivity Parameterization
,”
Int. J. Numer. Methods Eng.
,
69
(
10
), pp.
2196
2218
.
16.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
17.
Buhl
,
T.
,
Pedersen
,
C. B. W.
, and
Sigmund
,
O.
, 2000, “
Stiffness Design of Geometrically Nonlinear Structures Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
19
(
2
), pp.
93
104
.
18.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2003, “
An Element Removal and Reintroduction Strategy for the Topology Optimization of Structures and Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
57
, pp.
1413
1430
.
19.
Swan
,
C. C.
, and
Kosaka
,
I.
, 1997, “
Voigt-Reuss Topology Optimization for Structures With Nonlinear Material Behaviors
,”
Int. J. Numer. Methods in Eng.
,
40
(
20
), pp.
3785
3814
.
20.
Pedersen
,
C. B. W.
, 2002, “
Revisiting Topology Optimization of Continuum Structures With Elastoplastic Response
,”
15th Nordic Seminar on Computational Mechanics
, Aalborg, Denmark.
21.
Schwarz
,
S.
,
Maute
,
K.
, and
Ramm
,
E.
, 2001, “
Topology and Shape Optimization for Elastoplastic Structural Response
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
15/17
), pp.
2135
2155
.
22.
Kang
,
B. S.
,
Choi
,
W. S.
, and
Park
,
G. J.
, 2001, “
Structural Optimization under Equivalent Static Loads Transformed From Dynamic Loads Based on Displacement
,”
Comput. Struct.
,
79
(
2
), pp.
145
154
.
23.
Choi
,
W. S.
, and
Park
,
G. J.
, 2002, “
Structural Optimization Using Equivalent Static Loads at All the Time Intervals
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
19
), pp.
2077
2094
.
24.
Park
,
G. J.
, and
Kang
,
B. S.
, 2003, “
Validation of a Structural Optimization Algorithm Transforming Dynamic Loads Into Equivalent Static Loads
,”
J. Optim. Theory Appl.
,
118
(
1
), pp.
191
200
.
25.
Lee
,
H. A.
,
Kim
,
Y. I.
,
Park
,
G. J.
,
Kolonay
,
R. M.
,
Blair
,
M.
, and
Canfield
,
R. A.
, 2007, “
Structural Optimization of a Joined-Wing Using Equivalent Static Loads
,”
J. Aircraft
,
44
(
4
), pp.
1302
1308
.
26.
Shin
,
M. K.
,
Park
,
K. J.
, and
Park
,
G. J.
, 2007, “
Optimization of Structures With Nonlinear Behavior Using Equivalent Loads
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
4–6
), pp.
1154
1167
.
27.
Kim
,
Y. I.
, and
Park
,
G. J.
, 2010, “
Nonlinear Dynamic Response Structural Optimization Using Equivalent Static Loads
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
660
676
.
28.
Jang
,
H. H.
,
Lee
,
H. A.
,
Lee
,
J. Y.
, and
Park
,
G. J.
, 2012, “
Dynamic Response Topology Optimization in the Time Domain Using Equivalent Static Loads
,”
AIAA J.
,
50
(
1
), pp.
226
234
.
29.
Lee
,
H. A.
,
Zeshan
,
A.
, and
Park
,
G. J.
, 2010, “
Preliminary Study on Nonlinear Static Response Topology Optimization Using Equivalent Loads
,”
Trans. Korean Soc. Mech. Eng. A
,
34
(
12
), pp.
1811
1820
(in Korean).
30.
Park
,
G. J.
, 2011, “
Technical Overview of the Equivalent Static Loads Method for Non-Linear Static Response Structural Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
319
337
.
31.
ABAQUS Analysis User’s Manual Version 6.8
, 2008,
SIMULIA
,
Providence, RI
.
32.
Stroustrup
,
B.
, 2000,
The C++ Programming Language
,
Addison Wesley
,
Reading
.
You do not currently have access to this content.