Origami and paperfolding techniques may inspire the design of structures that have the ability to be folded and unfolded: their geometry can be changed from an extended, servicing state to a compact one, and back-forth. In traditional origami, folds are introduced in a sheet of paper (a developable surface) for transforming its shape, with artistic, or decorative intent; in recent times the ideas behind origami techniques were transferred in various design disciplines to build developable foldable/unfoldable structures, mostly in aerospace industry (Miura, 1985, “Method of Packaging and Deployment of Large Membranes in Space,” Inst. Space Astronaut. Sci. Rep., 618, pp. 1–9; Ikema et al., 2009, “Deformation Analysis of a Joint Structure Designed for Space Suit With the Aid of an Origami Technology,” 27th International Symposium on Space Technology and Science (ISTS)). The geometrical arrangement of folds allows a folding mechanism of great efficiency and is often derived from the buckling patterns of simple geometries, like a plane or a cylinder (e.g., Miura-ori and Yoshimura folding pattern) (Wu et al., 2007, “Optimization of Crush Characteristics of the Cylindrical Origami Structure,” Int. J. Veh. Des., 43, pp. 66–81; Hunt and Ario, 2005, “Twist Buckling and the Foldable Cylinder: An Exercise in Origami,” Int. J. Non-Linear Mech., 40(6), pp. 833–843). Here, we interest ourselves to the conception of foldable/unfoldable structures for civil engineering and architecture. In those disciplines, the need for folding efficiency comes along with the need for structural efficiency (stiffness); for this purpose, we will explore nondevelopable foldable/unfoldable structures: those structures exhibit potential stiffness because, when unfolded, they cannot be flattened to a plane (nondevelopability). In this paper, we propose a classification for foldable/unfoldable surfaces that comprehend non fully developable (and also non fully foldable) surfaces and a method for the description of folding motion. Then, we propose innovative geometrical configurations for those structures by generalizing the Miura-ori folding pattern to nondevelopable surfaces that, once unfolded, exhibit curvature.

References

References
1.
Miura
,
K.
, 1985, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Inst. Space Astronaut. Sci. Rep.
,
618
, pp.
1
9
.
2.
Ikema
,
K.
,
Gubarevich
,
A. V.
, and
Odawara
,
O.
, 2009, “
Deformation Analysis of a Joint Structure Designed for Space Suit With the Aid of an Origami Technology
,”
27th International Symposium on Space Technology and Science (ISTS)
.
3.
Wu
,
Z.
,
Hagiwara
,
I.
, and
Tao
,
X.
, 2007, “
Optimization of Crush Characteristics of the Cylindrical Origami Structure
,”
Int. J. Veh. Des.
,
43
, pp.
66
81
.
4.
Hunt
,
G. W.
, and
Ario
,
I.
, 2005, “
Twist Buckling and the Foldable Cylinder: An Exercise in Origami
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
833
843
.
5.
Delarue
,
J.-M.
, and
Brossin
,
J.-F.
, 1986, “
Figuration Graphique et Recherche Structurale. Constructions Plissées
,” École Nationale Supérieure d’Architecture de Paris-Villemin, Technical Report No. 411/87.
6.
El Smaili
,
A.
, and
Motro
,
R.
, 2007, “
Foldable/Unfoldable Curved Tensegrity Systems by Finite Mechanism Activation
,”
J. Int. Assoc. Shell Spatial Struct.
,
48
(
3
), pp.
153
160
.
7.
Otto
,
F.
,
Trostel
,
R.
, and
Schleyer
,
F. K.
, eds., 1973,
Tensile Structures; Design, Structure, and Calculation of Buildings of Cables, Nets, and Membranes
,
The MIT Press
,
Cambridge, MA
,
Vol. 1 and 2
.
8.
Hoberman
,
C.
, 1993, “
Curved Pleated Sheet Structures
,” U.S. Patent No. 5,234,727.
9.
Tachi
,
T.
, 2009, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spatial Struct.
,
50
(
3
), pp.
173
179
.
10.
Tachi
,
T.
, 2010, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
International Association for Shell and Spatial Structures (IASS) Symposium, Spatial Structures—Permanent and Temporary
, pp.
771
782
.
11.
Buri
,
H. U.
, and
Weinand
,
Y.
, 2008, “
Die Provisorische Kapelle von St. Loup
,”
Bull. Schweiz. Arbeitsgemeinschaft für Holzforschung
,
2
, pp.
16
20
.
12.
Demaine
,
E. D.
, and
O’Rourke
,
J.
, 2008,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
New York
.
13.
Shigley
,
J. E.
, and
Uicker
,
J. J.
, 1995,
Theory of Machines and Mechanisms
,
2nd ed.
,
McGraw-Hill
,
New York
.
14.
Dureisseix
,
D.
, “
An Overview of Mechanisms and Patterns With Origami
,”
Int. J. Space Struct.
(submitted).
15.
Stotz
,
I.
,
Gouaty
,
G.
, and
Weinand
,
Y.
, 2009, “
Iterative Geometric Design for Architecture
,”
J. Int. Assoc. Shell Spatial Struct.
,
50
(
1
), pp.
11
20
.
16.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Hart
,
V.
,
Price
,
G. N.
, and
Tachi
,
T.
, 2009, “
(Non)existence of Pleated Folds: How Paper Folds Between Creases
,”
7th Japan Conference on Computational Geometry and Graphs
, available at http://arxiv.org/abs/0906.4747
17.
Duncan
,
J. L.
,
Duncan
,
J. P.
,
Sowerby
,
R.
, and
Levy
,
B. S.
, 1981, “
Folding Without Distortion: Curved-Line Folding of Sheet Metal
,”
Sheet Metal Ind.
,
58
(
7
), pp.
527
533
.
18.
Dacorogna
,
B.
,
Marcellini
,
P.
, and
Paolini
,
E.
, 2008, “
Lipschitz-Continuous Local Isometric Immersions: Rigid Maps and Origami
,”
J. Math. Pures Appl.
,
90
(
1
), pp.
66
81
.
19.
Dacorogna
,
B.
,
Marcellini
,
P.
, and
Paolini
,
E.
, 2010, “
Origami and Partial Differential Equations
,”
Not. Am. Math. Soc.
,
57
(
5
), pp.
598
606
.
20.
Kilian
,
M.
,
Flöry
,
S.
,
Chen
,
Z.
,
Mitra
,
N. J.
,
Sheffer
,
A.
, and
Pottmann
,
H.
, 2008, “
Curved Folding
,”
ACM Trans. Graph.
,
27
(
3
), pp.
1
9
.
21.
Koschitz
,
D.
,
Demaine
,
E. D.
, and
Demaine
,
M. L.
, 2008, “
Curved Crease Origami
,”
Advances in Architectural Geometry
, pp.
29
32
.
22.
Cantarella
,
J. H.
,
Demaine
,
E. D.
,
Iben
,
H. N.
, and
O’Brien
,
J. F.
, 2004, “
An Energy-Driven Approach to Linkage Unfolding
,”
20th Annual Symposium on Computational Geometry
, pp.
134
143
.
23.
Miura
,
K.
, and
Pellegrino
,
S.
, 2001, “
Structural Concepts and Their Theoretical Foundations
” (unpublished booklet).
24.
Miura
,
K.
, 2009, “
The Science of Miura-Ori: A Review
,”
4th International Meeting of Origami Science, Mathematics, and Education
,
R. J.
Lang
, ed.,
A. K. Peters
, pp.
87
100
.
25.
Trautz
,
M.
, and
Künstler
,
A.
, 2009, “
Deployable Folded Plate Structures Folding Patterns Based on 4-Fold-Mechanism Using Stiff Plates
,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009
,
A.
Domingo
and
C.
Lazaro
, eds.
26.
Hull
,
T.
, 2006,
Project Origami
,
A. K. Peters
, Natick, MA, USA.
27.
Huffman
,
D. A.
, 1976, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.
28.
Wu
,
W.
, and
You
,
Z.
, 2010, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc., London Ser. A
,
466
(
2119
), pp.
2155
2174
.
29.
Dureisseix
,
D.
,
Gioia
,
F.
,
Motro
,
R.
, and
Maurin
,
B.
, 2011, “
Conception d’une Enveloppe Plissée Pliable-Dépliable
,”
Proceedings of the 10e Colloque National en Calcul des Structures—CSMA2011
.
You do not currently have access to this content.