In this study, a compliant version of the Cardan universal joint is introduced. The original design consists of two identical parts assembled at right angle with respect to each other. The single piece part can be produced from planar materials; thus, it has the advantage of easiness in manufacturing. Dimensions of the mechanism are devised in order to satisfy the Cardan joint theory and to avoid an undesired contact between the identical parts. As a design example, a mechanism is dimensioned. The resultant stresses at flexural hinges of this sample are determined via finite element analysis method and torque transmission capability of this mechanism is determined. Further, this sample is manufactured and operated under a considerable output loading. Therefore, robustness of the compliant Cardan joint is verified with this prototype. As well, it is verified that the results of experiments are consistent with the theoretical approaches.

References

References
1.
Chen
,
C. K.
, and
Freudenstein
,
F.
, 1986, “
Dynamic Analysis of a Universal Joint With Manufacturing Tolerances
,”
ASME J. Mech., Transm., Autom. Des.
,
108
, pp.
524
532
.
2.
Freudenstein
,
F.
, and
Macey
,
J. P.
, 1990, “
The Inertia Torques of the Hooke Joint
,”
Proceedings of the 21st Biennial ASME Mechanisms Conference
,
Chicago
, Sept. 16–19, Vol.
24
, pp.
407
413
.
3.
Porat
,
I.
, 1980, “
Moment Transmission by a Universal Joint
,”
Mech. Mach. Theory
,
15
(
4
), pp.
245
254
.
4.
Duditza
,
F.
, 1971,
Transmissions par Cardan
,
Editions Eyrolles
,
Paris
.
5.
Wagner
,
E. R.
, and
Cooney
,
C. E.
, 1979, “
Cardan or Hooke Universal Joint
Universal Joint and Driveshaft Design Manual
,
Society of Automotive Engineers
,
Warrendale, PA
, pp.
39
75
.
6.
Biancolini
,
M. E.
,
Brutti
,
C.
,
Pennestr`i
,
E.
, and
Valentini
,
P. P.
, 2003, “
Dynamic Mechanical Efficiency and Fatigue Analysis of the Double Cardan Homokinetic Joint
,”
Int. J. Veh. Des.
,
32
, pp.
231
249
.
7.
Fischer
,
I.
, and
Freudenstein
,
F.
, 1984, “
Internal Force and Moment Transmission in a Cardan Joint With Manufacturing Tolerances
,”
ASME J. Mech., Transm., Autom. Des.
,
106
(
9
), pp.
301
311
.
8.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2010, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mecha. Rob.
,
2
, pp.
1
9
.
9.
Howell
,
L. L.
, and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
10.
Midha
,
A.
,
Norton
,
T. W.
, and
Howell
,
L. L.
, 1994, “
On the Nomenclature, Classification and Abstractions of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
270
279
.
11.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
John Wiley and Sons, Inc.
,
New York
.
12.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
, pp.
121
125
.
13.
Howell
,
L. L.
, and
Midha
,
A.
, 1998, “
Parametric Deflection Approximations for End-Loaded, Large Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
, pp.
156
165
.
14.
Trease
,
B.
,
Moon
,
Y.
, and
Kota
,
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. D.
,
127
, pp.
788
798
.
15.
http://kmoddl.library.cornell.edu/model.php?m = 500, Number 099 in the Clark collection
16.
Mohan
,
R. A. V.
,
Sandor
,
G. N.
,
Kohli
,
D.
, and
Soni
,
A. H.
, 1973, “
Closed Form Synthesis of Spatial Function Generating Mechanism for the Maximum Number of Precision Points
,”
ASME J. Eng. Ind.
,
95
, pp.
725
736
.
17.
Soni
,
A. H.
, and
Harrisberger
,
L.
, 1967, “
The Design of Spherical Drag-Link Mechanism
,”
ASME J. Eng. Ind.
,
89
, pp.
171
181
.
18.
Freudenstein
,
F.
, 1965, “
On the Determination of the Type of Spherical Mechanisms
,”
Contemporary Problems in the Theory of Machines and Mechanisms
,
USSR Academy of Sciences
, pp.
193
196
.
19.
Savage
,
M.
, and
Hall
,
J.
, 1970, “
Unique Descriptions of All Spherical Four-Bar Linkages
,”
ASME J. Eng. Ind.
,
92
, pp.
559
563
.
20.
Gupta
,
K. C.
, 1986, “
Rotatability Considerations for Spherical Four-Bar Linkages With Applications to Robot Wrist Design
,”
ASME J. Mech., Transm., Autom. Des.
,
108
, pp.
387
391
.
21.
Gupta
,
K. C.
, and
Ma
,
R.
, 1995, “
A Direct Rotatability Criterion for Spherical Four-Bar Linkages
,”
ASME J. Mech. Des.
,
117
, pp.
597
600
.
22.
Yang
,
A. T.
, 1965, “
Static Force and Torque Analysis of Spherical Four-Bar Mechanisms
,”
ASME J. Eng. Ind.
,
87
, pp.
221
227
.
23.
Medellin-
Castillo
,
H. I.
, and
Cervantes-Sanchez
,
J. J.
, 2005, “
An Improved Mobility Analysis for Spherical 4R Linkages
,”
Mech. Mach. Theory
,
40
(
8
), pp.
931
947
.
24.
Tanik
,
E.
, and
Parlaktas
,
V.
, 2011, “
A New Type of Compliant Spatial Four-Bar (RSSR) Mechanism
,”
Mech. Mach. Theory
,
46
(
5
), pp.
593
606
.
25.
Parlaktas
,
V.
, and
Tanik
,
E.
, 2011, “
Partially Compliant Spatial Slider-Crank (RSSP) Mechanism
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1707
1718
.
26.
Cervantes-Sanchez
,
J. J.
, and
Medellin-Castillo
,
H. I.
, 2002, “
A Robust Classification Scheme for Spherical 4R Linkages
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1145
1163
.
You do not currently have access to this content.