Worm-like robots for applications including maintenance of small pipes and medical procedures in biological vessels such as the intestines, urethra, and blood vessels, have been the focus of many studies in the last few decades. The robots must be small, reliable, energy efficient, and capable of carrying cargos such as cameras, biosensors, and drugs. In this study, worm locomotion along rigid and compliant terrain is analyzed, and a novel design of worm-like multicell robots actuated by a single motor is presented. The robots employ a screw-like axis for sequencing and coordination of the cells and clamps. This design allows for significant miniaturization and reduces complexity and cost. The design of the robots and analysis of their dynamics and power efficiency are described. Two earthworm and two inchworm prototypes were built to demonstrate their performance. The robots are capable of moving forward, backward, and vertically and consume low power, which allow them to climb for hundreds of meters using onboard batteries.

References

References
1.
Kimura
,
H.
,
Shimizu
,
K.
, and
Hirose
,
S.
, 2004, “
Development of Genbu: Active-Wheel Passive-Joint Snake-Like Mobile Robot
,”
J. Rob. Mechatron.
,
16
(
3
), pp.
293
303
.
2.
Ostrowski
,
J.
, and
Burdick
,
J.
, 1996, “
Gait Kinematics for a Serpentine Robot
,”
Proceedings of the International Conference on Robotics and Automation
.
3.
Mori
,
M.
, and
Hirose
,
S.
, 2006, “
Locomotion of 3D Snake-Like Robots—Shifting and Rolling Control of Active Cord Mechanism ACM-R3
,”
J. Rob. Mechatron.
,
18
(
5
), pp.
521
528
.
4.
Chirikjian
,
G.
, and
Burdick
,
J. W.
, 1995, “
The Kinematics of Hyper-Redundant Robot Locomotion
,”
IEEE Trans. Rob. Autom.
,
11
(
6
), pp.
781
793
.
5.
Burdick
,
J. W.
,
Radford
,
J.
, and
Chirikjian
,
G. S.
, 1995, “
Sidewinging Locomotion Gait for Hyper Redundant Robots
,”
Adv. Rob.
,
9
(
3
), pp
195
216
.
6.
Lu
,
Z.
,
Ma
,
S.
,
Li
,
B.
, and
Wang
,
Y.
, 2006, “
3D Locomotion of a Snake-Like Robot Controlled by Cyclic Inhibitory CPG Model
,”
Proceedings of the International Conference on Intelligent robots and Systems
, pp.
3697
3702
.
7.
Hirose
,
S.
, and
Fukushima
,
E. F.
, 2004, “
Snakes and Strings: New Robotics Components for Rescue Operations
,”
Int. J. Robot. Res.
,
23
, pp.
341
349
.
8.
Wolf
,
A.
,
Choset
,
H.
,
Brown
,
H. B.
, and
Casciola
,
R.
, 2005, “
Design and Control of a Mobile Hyper-Redundant Urban Search and Rescue Robot
,”
Int. J. Adv. Rob.
,
19
(
8
), pp.
221
248
.
9.
Dario
,
P.
,
Ciarletta
,
P.
,
Menciassi
,
A.
, and
Kim
,
B.
, 2004, “
Modeling and Experimental Validation of the Locomotion of Endoscopic Robots in the Colon
,”
Int. J. Rob. Res.
,
23
(
4–5
), pp.
549
556
.
10.
Kassim
,
I.
,
Phee
,
L.
,
Ng
,
W. S.
,
Feng
,
G.
,
Dario
,
P.
, and
Mosse
,
C. A.
, 2006, “
Locomotion Techniques for Robotic Colonoscopy
,”
IEEE Eng. Med. Biol. Mag.
,
25
(
3
), pp.
49
56
.
11.
Phee
,
L.
,
Menciassi
,
A.
,
Gorini
,
S.
,
Pernorio
,
G.
,
Arena
,
A.
, and
Dario
,
P.
, 2002, “
An Innovative Locomotion Principle for Minirobots Moving in the Gastrointestinal Tract
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1125
1130
.
12.
Phee
,
L.
,
Accoto
,
D.
,
Menciassi
,
A.
,
Stefanini
,
C.
,
Carrozza
,
M. C.
, and
Dario
,
P.
, 2002, “
Analysis and Development of Locomotion Devices for the Gastrointestinal Tract
,”
IEEE Trans. Biomed. Eng.
,
49
(
6
), pp.
613
616
.
13.
Phee
,
L.
,
Menciassi
,
A.
,
Accoto
,
D.
,
Stefanini
,
C.
, and
Dario
,
P.
, 2003, “
Analysis of Robotic Locomotion Devices for the Gastrointestinal Tract
,”
Rob. Res.
,
6
, pp.
467
483
.
14.
Menciassi
,
A.
,
Gorini
,
S.
,
Pernorio
,
G.
, and
Dario
,
P.
, 2004, “
A SMA Actuated Artificial Earthworm
,”
Proceedings IEEE International Conference on Robotics and Automation
, pp.
3282
3287
.
15.
Kim
,
B.
,
Lee
,
S.
, and
Park
,
J.
, 2005, “
Design and Fabrication of a Locomotive Mechanism for Capsule-Type Endoscopes Using Shape Memory Alloys (SMAs)
,”
IEEE/ASME Trans. Mechatron.
,
10
(
1
), pp.
77
86
.
16.
Kim
,
B.
,
Lim
,
H. Y.
, and
Park
,
J. H.
, 2006, “
Inchworm Like Colonoscopic Robot With Hollow Body and Steering Device
,”
JSME Int. J., Ser. C
,
49
(
1
), pp.
205
212
.
17.
Lim
,
J.
,
Park
,
H.
,
An
,
J.
,
Hong
,
Y. S.
,
Kim
,
B.
, and
Yi
,
B. J.
, 2008, “
One Pneumatic Line Based Inchworm-Like Micro Robot for Half-Inch Pipe Inspection
,”
Mechatronics
,
18
, pp.
315
322
.
18.
Li
,
J.
,
Sedaghati
,
R.
,
Dargahi
,
J.
, and
Waechter
,
D.
, 2005, “
Design and Development of a New Piezoelectric Linear Inchworm Actuator
,”
Mechatronics
,
15
, pp.
651
681
.
19.
Asari
,
V. K.
,
Irwan
,
S. K.
, and
Kassim
,
M.
, 2000, “
A Fully Autonomous Microrobotic Endoscopy System
,”
J. Intell. Robotic Syst.
,
28
, pp.
325
341
.
20.
Brett Slatkin
,
A.
,
Burdick
,
J.
, and
Grundfest
,
W.
, 1995, “
The Development of a Robotic Edoscope
,”
Proceedings of the Symposium on Experimental Robotics IV
, Vol.
223
, pp.
162
171
.
21.
Menciassi
,
A.
,
Accoto
,
D.
,
Gorini
,
S.
, and
Dario
,
P.
, 2006, “
Development of a Biomimetic Miniature Robotic Crawler
,”
Auton. Rob.
,
21
(
2
), pp.
155
163
.
22.
Kim
,
B.
,
Lee
,
M. G.
,
Lee
,
Y. P.
,
Kim
,
Y.
, and
Lee
,
G.
, 2006, “
An Earthworm-Like Micro Robot Using Shape Memory Alloy Actuator
,”
Sens. Actuators, A
,
125
(
2
), pp.
429
437
.
23.
Chi
,
D.
, and
Yan
,
G.
, 2003, “
From Wired to Wireless: A Miniature Robot for Intestinal Inspection
,”
J. Med. Eng. Technol.
,
27
(
2
), pp.
71
76
.
24.
Wang
,
K.
,
Yan
,
G.
,
Jiang
,
P.
, and
Ye
,
D.
, 2008, “
A Wireless Robotic Endoscope for Gastrointestine
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
206
210
.
25.
Wang
,
K.
,
Yan
,
G.
,
Ma
,
G.
, and
Ye
,
D.
, 2009, “
An Earthworm-Like Robotic Endoscope System for Human Intestine: Design, Analysis, and Experiment
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
210
221
.
26.
Saga
,
N.
,
Seto
,
T.
,
Takanashi
,
H.
, and
Saito
,
N.
, 2008, “
Development of a Peristaltic Crawling Robot Using Planar Link Mechanisms
,”
IEEJ Trans. Electr. Electron. Eng.
,
3
(
1
), pp.
72
78
.
27.
Dietrich
,
J.
,
Meier
,
P.
,
Oberthur
,
S.
,
Preub
,
R.
,
Voges
,
D.
, and
Zimmermann
,
K.
, “
Development of a Peristaltically Actuated Device for the Minimal Invasive Surgery With a Haptic Sensor Array
,” http://www.docstoc.com/docs/50288015/development-of-a-peristatically-actuated-device-for-the-minimal
28.
Glozman
,
D.
,
Hassidov
,
N.
,
Senesh
,
M.
, and
Shoham
,
M.
, 2010, “
A Self-Propelled Inflatable Earthworm-Like Endoscope Actuated by Single Supply Line
,”
IEEE Trans. Biomed. Eng.
,
57
(
6
), pp.
1264
1272
.
29.
Zarrouk
,
D.
,
Sharf
,
I.
, and
Shoham
,
M.
, 2010, “
Analysis of Earthworm-Like Robotic Locomotion on Compliant Surfaces
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1574
1579
.
30.
Zarrouk
,
D.
,
Sharf
,
I.
, and
Shoham
,
M.
, 2010, “
Worm-Like Robotic Locomotion in Flexible Environment
,”
Proceedings of the 12th International Symposium on Advances in Robot Kinematics
, pp.
81
89
.
31.
Baek
,
N. K.
,
Sung
,
I. H.
, and
Kim
,
D. E.
, “
Frictional Resistance Characteristics of a Capsule Inside the Intestine for Microendoscope Design
,”
Proc Inst. Mech Eng., Part H: J Eng. Med.
,
218
, pp.
193
201
.
32.
Wang
,
X.
, and
Meng
,
M. Q. -H. Q.-H.
, 2006, “
Study of Frictional Properties of the Small Intestine for Design of Active Capsule Endoscope
,”
2006 1st IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
, p.
6
.
33.
Wang
,
K. D.
, and
Yan
,
G. Z.
, 2009, “
Research on Measurement and Modeling of the Gastro Intestine’s Frictional Characteristics
,”
Meas. Sci. Technol.
,
20
(
1
),
015803
.
34.
Fung
,
Y. C.
, 1993,
Biomechanics, Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
35.
Shigley
,
M.
,
Mechanical Engineering Design (International Edition)
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.