Computational design synthesis aims to iteratively and automatically generate solution spaces of standard and novel design alternatives to support the innovation process. New approaches are required to generate alternative solutions at the function and behavior level as well as to ease the computational modeling of design knowledge. This paper introduces the approach of object-oriented graph grammars for the computational synthesis of product models based on a Function–Behavior–Structure (FBS) representation. The approach combines the advantages of a generic and systematic design method with a highly computable graph representation and object-oriented concepts. Through this combination, advances in terms of extendibility, efficiency, and flexible formalization of declarative and procedural engineering knowledge are achieved. Validation of the method is given through the synthesis of hybrid powertrains. The generation of hybrid powertrain solution spaces is shown, especially focusing on the impact of an evolving vocabulary, or building blocks, for synthesis. Future work includes integrating search methods in the synthesis process along with quantitative evaluation using simulation methods.

References

References
1.
Hauschildt
,
J.
, 2004,
Innovations management
,
3rd ed.
,
Franz Vahlen
,
München
.
2.
Antonsson
,
E. K.
, and
Cagan
,
J.
, 2001,
Formal Engineering Design Synthesis
,
Cambridge University Press
,
Cambridge
.
3.
Chakrabarti
,
A.
, ed., 2002,
Engineering Design Synthesis
,
Springer
,
London
.
4.
Erden
,
M.
,
van Beek
,
T.
,
Komoto
,
H.
,
D’Amelio
,
V.
,
Echavarria
,
E.
, and
Tomiyama
,
T.
, 2008, “
A Review of Function Modeling: Approaches and Applications
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
2
), pp.
147
169
.
5.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
, 2007,
Engineering Design: A Systematic Approach
,
3rd ed.
,
Springer
,
London
.
6.
Ulrich
,
K.
, and
Eppinger
,
S. D.
, 2003,
Product Design and Development
,
McGraw Hill
,
New York
.
7.
Eder
,
W. E.
, and
Hosnedl
,
S.
, 2008,
Design Engineering a Manual for Enhanced Creativity
,
CRC Press
,
Boca Raton
.
8.
Ehrlenspiel
,
K.
, 2009,
Integrierte Produktentwicklung
,
4th ed.
,
Hanser
,
München
.
9.
Wyatt
,
D. F.
,
Wynn
,
D. C.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
, 2011, “
Supporting Product Architecture Design Using Computational Design Synthesis With Network Structure Constraints
,”
Res. Eng. Des.
,
23
, pp.
17
52
.
10.
Sriram
,
R. D.
, 1997,
Intelligent Systems for Engineering
,
Springer
,
London
.
11.
Russell
,
S. J.
, and
Norvig
,
P.
, 2003,
Artificial Intelligence: A Modern Approach
,
2nd ed.
,
Pearson Education
,
Upper Saddle River
.
12.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R. B.
,
Cagan
,
J.
,
Campbell
,
M. I.
,
Hernandez
,
N. V.
,
Wood
,
K. L.
, and
Vargas-Hernandez
,
N.
, 2011, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
13.
Yoshioka
,
M.
,
Umeda
,
Y.
,
Takeda
,
H.
,
Shimomurad
,
Y.
,
Nomaguchi
,
Y.
, and
Tomiyama
,
T.
, 2004, “
Physical Concept Ontology for the Knowledge Intensive Engineering Framework
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
95
113
.
14.
Umeda
,
Y.
, and
Tomiyama
,
T.
, 1995, “
FBS Modeling: Modeling Scheme of Function for Conceptual Design
,”
Proceedings of 9th International Workshop on Qualitative Reasoning
, pp.
271
278
.
15.
Goel
,
A.
,
Bhatta
,
S. R.
, and
Stroulia
,
E.
, 1996, “
Kritik: An Early Case-Based Design System
,”
Issues and Applications of Case-Based Reasoning in Design
,
M. L.
Maher
and
P.
Pu
, eds.,
Lawrence Erlbaum Associates
,
Mahwah
, Chap. 5, pp.
87
132
.
16.
Yaner
,
P.
, and
Goel
,
A.
, 2007, “
Understanding Drawings by Compositional Analogy
,”
Proceedings of International Joint Conference on Artificial Intelligence, IJCAI-2007
, pp.
1131
1137
17.
Welch
,
R. V.
, and
Dixon
,
J. R.
, 1994, “
Guiding Conceptual Design Through Behavioral Reasoning
,”
Res. Eng. Des.
,
6
(
3
), pp.
169
188
.
18.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
, 2000, “
Agent-Based Synthesis of Electromechanical Design Configurations
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
61
69
.
19.
Mittal
,
S.
, and
Frayman
,
F.
, 1989, “
Towards a Generic Model of Configuration Tasks
,”
Proceedings of Eleventh International Joint Conference on Artificial Intelligence, IJCAI-89
,
Morgan
Kaufmann
, Vol.
2
, pp.
1395
1401
.
20.
Schmidt
,
L. C.
, and
Cagan
,
J.
, 1998, “
Optimal Configuration Design: An Integrated Approach Using Grammars
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
2
9
.
21.
Liang
,
V.-C.
, and
Paredis
,
C. J. J.
, 2004, “
A Port Ontology for Conceptual Design of Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
3
), pp.
206
217
.
22.
Gips
,
J.
, and
Stiny
,
G.
, 1980, “
Production Systems and Grammars: A Uniform Characterization
,”
Environ. Plan. B: Plan. Des.
,
7
(
4
), pp.
399
408
.
23.
Koller
,
R.
, 1994,
Konstruktionslehre für den Maschinenbau
,
3rd ed.
,
Springer
,
Berlin
.
24.
Verein Deutscher Ingenieure, 1993, Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, 2221.
25.
Kerzhner
,
A. A.
, and
Paredis
,
C. J. J.
, 2009, “
Using Domain Specific Languages to Capture Design Synthesis Knowledge for Model-Based Systems Engineering
,”
Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2009
.
26.
Wu
,
Z.
,
Campbell
,
M. I.
, and
Fernandez
,
B. R.
, 2008, “
Bond Graph Based Automated Modeling for Computer-Aided Design of Dynamic Systems
,”
ASME J. Mech. Des.
,
130
(
4
), p.
041102
.
27.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
, 2006, “
A Graph Grammar Based Framework for Automated Concept Generation
,”
Proceedings of 9th International Design Conference, DESIGN 2006
, pp.
61
68
.
28.
Schmidt
,
L. C.
,
Shetty
,
H.
, and
Chase
,
S. C.
, 2000, “
A Graph Grammar Approach for Structure Synthesis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
371
376
.
29.
Alber
,
R.
, and
Rudolph
,
S.
, 2003, “
43-A Generic Approach for Engineering Design Grammars
,”
Proceedings of AAAI Spring Symposium
.
30.
Schäfer
,
J.
, and
Rudolph
,
S.
, 2005, “
Satellite Design by Design Grammars
,”
Aerosp. Sci. Technol.
,
9
(
1
), pp.
81
91
.
31.
Starling
,
A. C.
, and
Shea
,
K.
, 2005, “
A Parallel Grammar for Simulation-Driven Mechanical Design Synthesis
,”
Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2005
.
32.
Lin
,
Y.-S.
,
Shea
,
K.
,
Johnson
,
A.
,
Coultate
,
J.
, and
Pears
,
J.
, 2009, “
A Method and Software Tool for Automated Gearbox Synthesis
,”
Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2009
, pp.
111
121
.
33.
Bolognini
,
F.
,
Seshia
,
A. A.
, and
Shea
,
K.
, 2007, “
Exploring the Application of Multidomain Simulation-based Computational Synthesis Methods in MEMS Design
,”
Proceedings of International Conference on Engineering Design, ICED’07
, Aug., pp.
1
13
.
34.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
, 1996, “
An Approach to Functional Synthesis of Solutions in Mechanical Conceptual Design. Part II: Kind Synthesis
,”
Res. Eng. Des.
,
8
, pp.
52
62
.
35.
Helms
,
B.
,
Shea
,
K.
, and
Hoisl
,
F.
, 2009, “
A Framework for Computational Design Synthesis Based on Graph-Grammars and Function-Behavior-Structure
,”
Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2009
, pp.
841
851
36.
Gero
,
J. S.
, and
Kannengiesser
,
U.
, 2004, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.
37.
Hirtz
,
J.
,
Stone
,
R. B.
,
Mcadams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
, pp.
65
82
.
38.
Ponn
,
J.
, and
Lindemann
,
U.
, 2011,
Konzeptentwicklung und Gestaltung technischer Produkte
,
2nd ed.
,
Springer
,
Berlin, Germany
.
39.
Helms
,
B.
, and
Shea
,
K.
, 2010, “
Object-Oriented Concepts for Computational Design Synthesis
,”
Proceedings of 11th International Design Conference, DESIGN 2010
,
D.
,
Marjanović
,
M.
,
Štorga
,
N.
,
Pavković
, and
N.
,
Bojčetić
, eds.,
The Design Society
.
40.
International Organization for Standardization, 2004, Information technology—Metadata registries (MDR)—Part 1: Framework, ISO/IEC 11179-1.
41.
Corradini
,
A.
,
Montanari
,
U.
,
Rossi
,
F.
,
Ehrig
,
H.
,
Heckel
,
R.
, and
Löwe
,
M.
, 1997, “
Algebraic Approaches to Graph Transformation, Part I: Basic Concepts and Double Pushout Approach
,”
Handbook of Graph Grammars and Computing by Graph Transformation—Foundations
,
G.
Rozenberg
, ed.,
World Scientific
,
Singapore
, Vol.
1
, pp.
163
245
.
42.
Geiß
,
R.
,
Batz
,
G. V.
,
Grund
,
D.
,
Hack
,
S.
, and
Szalkowski
,
A.
, 2006, “
GrGen: A Fast SPO-Based Graph Rewriting Tool
,”
Proceedings of International Conference on Graph Transformations
,
Springer
, pp.
383
397
.
43.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
, 2005, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
.
44.
Fuhs
,
A.
, 2009,
Hybrid Vehicles and the Future of Personal Transportation
,
CRC Press
,
Boca Raton
.
45.
Gorbea
,
C.
,
Spielmannleitner
,
T.
,
Lindemann
,
U.
, and
Fricke
,
E
, “
Analysis of Hybrid Vehicle Architectures Using Multiple Domain Matrices
,”
Proceedings of 10th International Design Structure Matrix Conference, DSM’08
.
46.
Price
,
C.
, and
Struss
,
P.
, 2003, “
Model-Based Systems in the Automotive Industry
,”
AI Mag.
,
24
(
4
), pp.
17
34
.
47.
Neema
,
S.
,
Gray
,
J.
,
Picone
,
J.
,
Porandla
,
S.
,
Musunuri
,
S.
, and
Mathews
,
J.
, 2005, “
Hybrid Powertrain Design Using a Domain-Specific Modeling Environment
,”
Proceedings of 2005 IEEE Vehicle Power and Propulsion Conference
, pp.
6
12
.
48.
Paredis
,
C. J. J.
,
Diaz-Calderon
,
A.
,
Sinha
,
R.
, and
Khosla
,
P. K.
, 2001, “
Composable Models for Simulation-Based Design
,”
Eng. Comput.
,
17
(
2
), pp.
112
128
.
49.
Rossi
,
F.
,
Beek
,
P. V.
, and
Walsh
,
T.
, eds., 2006,
Handbook of Constraint Programming
(Foundations of Artificial Intelligence), Elsevier Science
,
Amsterdam
.
50.
Wölkl
,
S.
, and
Shea
,
K.
, 2009, “
A Computational Product Model for Conceptual Design Using SysML
,”
Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2009
.
You do not currently have access to this content.