In this paper, results from an experimental study on power losses of planetary gear sets are presented. The experimental setup includes a specialized test apparatus to operate a planetary gear set under tightly controlled speed, load and oil temperature conditions, and instrumentation for an accurate measurement of power losses. The test matrix consisted of gear sets having three–six planets under loaded and unloaded conditions in order to separate load independent (spin) and load dependent (mechanical) power losses. The test matrix also included tests with planet gears having two levels of tooth surface roughness amplitudes as well as tests at varying oil inlet temperature. The results clearly indicate that spin power loss decreases with both reduction of number of planets and increase in oil temperature. Meanwhile, the mechanical power loss decreases with a decrease in oil temperature and reduction in gear surface roughnesses. Results also indicate that mechanical losses can be described by the power transmitted and lost by each planet branch.

References

References
1.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
, 2008, “
An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing
,”
ASME J. Mech. Des.
,
130
(
4
), pp.
041701
.
2.
Xu
,
H.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Maddock
,
D.
, 2007, “
Prediction of Mechanical Efficiency of Parallel-Axis Gear Pairs
,”
ASME J. Mech. Des.
,
129
, pp.
58
68
.
3.
Li
,
S.
, and
Kahraman
,
A.
, 2010, “
A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,”
ASME J. Tribol.
,
132
, pp.
011501
.
4.
Li
,
S.
,
Vaidyanathan
,
A.
,
Harianto
,
J.
, and
Kahraman
,
A.
, 2009, “
Influence of Design Parameters on Mechanical Power Losses of Helical Gear Pairs
,”
JSME J. Adv. Mech. Des. Syst. Manuf.
,
3
(
2
), pp.
146
158
.
5.
Seetharaman
,
S.
, and
Kahraman
,
A.
, 2009, “
Load-Independent Power Losses of a Spur Gear Pair: Model Formulation
,”
ASME J. Tribol.
,
131
, p.
022201
.
6.
Martin
,
K. F.
, 1978, “
A Review of Friction Predictions in Gear Teeth
,”
Wear
,
49
, pp.
201
238
.
7.
Yada
,
T.
, 1997, “
Review of Gear Efficiency Equation and Force Treatment
,”
JSME Int. J., Ser. C
,
40
, pp.
1
8
. available at http://www.journalarchive.jst.go.jp/english/jnlabstract_en.php?
8.
Li
,
Y.
, and
Seireg
,
A. A.
, 1989, “
Predicting the Coefficient of Friction in Sliding–Rolling Contacts
,”
J. Tribol.
,
111
, pp.
386
391
.
9.
Petry-Johnson
,
T.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Chase
,
D. R.
, 2008, “
An Experimental Investigation of Spur Gear Efficiency
,”
ASME J. Mech. Des.
,
130
, pp.
062601
.
10.
Yada
,
T.
, 1972, “
The Measurement of Gear Mesh Friction Losses
,” ASME 72-PTG-35, Oct. 8–12.
11.
Naruse
,
C.
,
Haizuka
,
S.
,
Nemoto
,
R.
, and
Kurokawa
,
K.
, 1986, “
Studies on Frictional Loss, Temperature Rise and Limiting Load for Scoring of Spur Gear
,”
Bull. JSME
,
29
(
248
), pp.
600
608
.
12.
Naruse
,
C.
,
Haizuka
,
S.
,
Nemoto
,
R.
, and
Takahashi
,
H.
, 1991, “
Influences of Tooth Profile on Frictional Loss and Scoring Strength in the Case of Spur Gears
,”
MPT’91 JSME International Conference on Motion and Power Transmissions
, Hiroshima, Japan.
13.
Mizutani
,
H.
, and
Isikawa
,
Y.
, 1996, “
Power Loss of Long Addendum Spur Gears
,”
VDI Berichte NR
,
1230
, pp.
83
95
.
14.
Misharin
,
Y. A.
, 1958, “
Influence of the Friction Condition on the Magnitude of the Friction Coefficient in the Case of Rollers with Sliding
,”
Proceedings International Conference on Gearing
, London, pp.
159
164
.
15.
Benedict
,
G. H.
, and
Kelly
,
B. W.
, 1960, “
Instantaneous Coefficients of Gear Tooth Friction
,”
Transactions of ASLE, ASLE Lubrication Conference
, Oct., pp.
57
70
.
16.
O’Donoghue
,
J. P.
, and
Cameron
,
A.
, 1966, “
Friction and Temperature in Rolling Sliding Contacts
,”
ASLE Trans.
9
, pp.
186
194
.
17.
Drozdov
,
Y. N.
, and
Gavrikov
,
Y. A.
, 1967, “
Friction and Scoring Under the Conditions of Simultaneous Rolling and Sliding of Bodies
,”
Wear
,
11
, pp.
291
302
.
18.
Conry
,
T. F.
, and
Seireg
,
A.
, 1972, “
A Mathematical Programming Technique for the Evaluation of Load Distribution and Optimal Modifications for Gear Systems
,”
ASME J. Eng. Ind.
,
94
, pp.
1115
1122
.
19.
LDP
, 2009,
Gear Load Distribution Program, Gear Dynamics and Gear Noise Research Laboratory
,
The Ohio State University
,
Columbus, OH
.
20.
Changenet
,
C.
, and
Velex
,
P.
, 2007, “
A Model for the Prediction of Churning Losses in Geared Transmissions—Preliminary Results
,”
ASME J. Mech. Des.
,
129
, pp.
128
133
.
21.
Daily
,
J.
, and
Nece
,
R.
, 1960, “
Chamber Dimension Effects of Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
, pp.
217
232
.
22.
Mann
,
R.
, and
Marston
,
C.
, 1961, “
Friction Drag on Bladed Disks in Housings as a Function of Reynolds Number, Axial and Radial Clearance, and Blade Aspect Ratio and Solidity
,”
ASME J. Basic Eng.
,
83
, pp.
719
723
.
23.
Boness
,
R. J.
, 1989, “
Churning Losses of Discs and Gear Running Partially Submerged in Oil
,”
Proceedings of the ASME International Power Transmission and Gearing Conference
, Chicago, IL, pp.
355
359
.
24.
Luke
,
P.
, and
Olver
,
A. V.
, 1999, “
A Study of Churning Losses in Dip-Lubricated Spur Gears
,”
Proc. Inst. Mech. Eng., Part A
,
213
, pp.
337
346
.
25.
Terekhov
,
A. S.
, 1991, “
Basic Problems of Heat Calculation of Gear Reducers
,”
JSME International Conference on Motion and Power Transmissions
, Hiroshima, Japan, pp.
490
495
.
26.
Ariura
,
Y.
,
Ueno
,
T.
, and
Sunaga
,
T.
, 1973, “
The Lubricant Churning Loss in Spur Gear Systems
,”
Bull. JSME
,
16
, pp.
881
890
.
27.
Petry-Johnson
,
T.
, 2007, “
Experimental Investigation of Spur Gear Efficiency
,” Master’s thesis, The Ohio State University, Columbus, OH.
28.
Moorhead
,
M.
, 2007, “
Experimental Investigation of Spur Gear Efficiency and the Development of a Helical Gear Efficiency Test Machine
,” Master’s thesis, The Ohio State University, Columbus, OH.
29.
Akin
,
L. S.
, and
Mross
,
J. J.
, 1975, “
Theory for the Effect of Windage on the Lubricant Flow in the Tooth Spaces of Spur Gears
,”
ASME J. Eng. Ind.
,
97
, pp.
1266
1273
.
30.
Akin
,
L. S.
,
Townsend
,
J. P.
, and
Mross
,
J. J.
, 1975, “
Study of Lubricant Jet Flow Phenomenon in Spur Gears
,”
ASME J. Lubr. Technol.
,
97
, pp.
288
295
.
31.
Dawson
,
P. H.
, 1984, “
Windage Losses in Larger High-Speed Gears
,”
Proc. Inst. Mech. Eng., Part A, Power Process Eng.
,
198
(
1
), pp.
51
59
.
32.
Diab
,
Y.
,
Ville
,
F.
, and
Velex
,
P.
, 2006, “
Investigations on Power Losses in High Speed Gears
,”
Proc. Inst. Mech. Eng., Part J. J. Eng. Tribol.
,
220
, pp.
191
298
.
33.
Wild
,
P. M.
,
Dijlali
,
N.
, and
Vickers
,
G. W.
, 1996, “
Experimental and Computational Assessment of Windage Losses in Rotating Machinery
,”
ASME Trans. J. Fluid Eng.
,
118
, pp.
116
122
.
34.
Al-Shibl
,
K.
,
Simmons
,
K.
, and
Eastwick
,
C. N.
, 2007, “
Modeling Gear Windage Power Loss From an Enclosed Spur Gears
,”
Proc. Inst. Mech. Eng. Part A
,
221
(
3
), pp.
331
341
.
35.
Eastwick
,
C. N.
, and
Johnson
,
G.
, 2008, “
Gear Windage: A Review
,”
ASME J. Mech. Des.
,
130
(
3
), p.
034001
.
36.
Pechersky
,
M. J.
, and
Wittbrodt
,
M. J.
, 1989, “
An Analysis of Fluid Flow Between Meshing Spur Gear Teeth
,”
Proceedings of the ASME Fifth International Power Transmission and Gearing Conference
, Chicago, IL, pp.
335
342
.
37.
Seetharaman
,
S.
,
Kahraman
,
A.
,
Moorhead
,
M. D.
, and
Petry-Johnson
,
T. T.
, 2009, “
Oil Churning Power Losses of a Gear Pair: Experiments and Model Validation
,”
ASME J. Tribol.
,
131
, pp.
022202
.
38.
Mantriota
,
G.
, 2001, “
Theoretical and Experimental Study of a Power Split CVT System: Part 1
,”
Proc. Inst. Mech. Eng. Part D. J. Automob. Eng.
215
(
D7
), pp.
837
850
.
39.
Mantriota
,
G.
, 2001, “
Theoretical and Experimental Study of a Power Split CVT System: Part 2
,”
Proc. Inst. Mech. Eng. Part D. J. Automob. Eng.
215
(
D7
), pp.
851
864
.
40.
Mantriota
,
G.
, and
Pennestrì
,
E.
, 2001, “
Theoretical and Experimental Efficiency Analysis of Multi Degrees-of-Freedom Epicyclic Gear Trains
,”
Multibody Syst. Dyn.
,
7
, pp.
389
406
.
41.
Wang
,
H.
,
Cui
,
Y.
,
Xue
,
L.
, and
Xi
,
X.
, 2005, “
Characteristic Analysis and Experiment Study of the Closed Planetary Gear Transmission
,”
ASME International Design Engineering Technical Conferences
, Long Beach, CA.
42.
del Castillo
,
J. M.
, 2002, “
The Analytical Expression of the Efficiency of Planetary Gear Trains
,”
Mech. Mach. Theory
,
37
, pp.
197
214
.
43.
Anderson
,
N.
,
Loewenthal
,
S.
, and
Black
,
J.
, 1984, “
An Analytical Method to Predict Efficiency of Aircraft Gearboxes
,” NASA TM–83716, AIAA-84-1500.
44.
Anderson
,
N. E.
, and
Loewenthal
,
S. H.
, 1982, “
Design of Spur Gears for Improved Efficiency
,”
ASME J. Mech. Des.
,
104
, pp.
767
774
.
45.
Chen
C.
, and
Angeles
,
J.
, 2007, “
Virtual-Power Flow and Mechanical Gear-Mesh Power Losses of Epicyclic Gear Trains
,”
ASME J. Mech. Des.
,
129
, pp.
107
113
.
46.
Fanghella
,
P.
, 2009, “
A Computational Approach for the Evaluation of Single d.o.f. Planetary Gear Efficiency
,”
Proceedings of the 5th International Workshop on Computational Kinematics
, pp.
367
374
.
47.
Singh
,
A.
,
Kahraman
,
A.
, and
Ligata
,
H.
, 2008, “
Internal Gear Strains and Load Sharing in Planetary Transmissions–Model and Experiments
,”
J. Mech. Des.
,
130
, p.
072602
.
48.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
, 2009, “
A Closed-Form Planet Load Sharing Formulation for Planetary Gear Sets Using a Translational Analogy
,”
ASME J. Mech. Des.
,
131
, pp.
021007
.
You do not currently have access to this content.