In the discrete topology optimization, material state is either solid or void and there is no topology uncertainty caused by any intermediate material state. In this paper, the improved hybrid discretization model is introduced for the discrete topology optimization of structures. The design domain is discretized into quadrilateral design cells and each quadrilateral design cell is further subdivided into triangular analysis cells. The dangling and redundant solid design cells are completely eliminated from topology solutions in the improved hybrid discretization model to avoid sharp protrusions. The local stress constraint is directly imposed on each triangular analysis cell to make the designed structure safe. The binary bit-array genetic algorithm is used to search for the optimal topology to circumvent the geometrical bias against the vertical design cells. The presented discrete topology optimization procedure is illustrated by two topology optimization examples of structures.

References

References
1.
Bendsoe
,
M. P.
,
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
, pp.
197
224
.10.1016/0045-7825(88)90086-2
2.
Bendsoe
,
M. P.
,
1995
, “
Optimization of Structural Topology, Shape, and Material
,”
Springer
,
New York
.
3.
Hinton
,
E.
, and
Hassani
,
B.
,
1999
,
Homogenization and Structural Topology Optimization: Theory, Practice and Software
,
Springer
,
New York
.
4.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
,
54
, pp.
331
389
.10.1115/1.1388075
5.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
, pp.
217
237
.10.1007/s00158-007-0217-0
6.
Diaz
,
A. R.
, and
Sigmund
,
O.
,
1995
, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
,
10
, pp.
40
45
.10.1007/BF01743693
7.
Jog
,
C. S.
, and
Haber
,
R. B.
,
1996
, “
Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design
,”
Comput. Methods Appl. Mech. Eng.
,
130
, pp.
203
226
.10.1016/0045-7825(95)00928-0
8.
Poulsen
,
T. A.
,
2002
, “
A Simple Scheme to Prevent Checkerboard Patterns and One-Node Connected Hinges in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
24
, pp.
396
399
.10.1007/s00158-002-0251-x
9.
Poulsen
,
T. A.
,
2003
, “
A New Scheme for Imposing a Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
57
, pp.
741
760
.10.1002/nme.694
10.
Pomezanski
,
V.
,
Querin
,
O. M.
, and
Rozvany
,
G. I. N.
,
2005
, “
CO-SIMP: Extended SIMP Algorithm With Direct Corner Contact Control
,”
Struct. Multidiscip. Optim.
,
30
, pp.
164
168
.10.1007/s00158-005-0514-4
11.
Haber
,
R. B.
,
Jog
,
S. C.
, and
Bendsoe
,
M. P.
,
1996
, “
A New Approach to Variable-Topology Shape Design Using a Constraint on Perimeter
,”
Struct. Multidiscip. Optim.
,
11
, pp.
1
12
.10.1007/BF01279647
12.
Petersson
,
J.
,
1999
, “
Some Convergence Results in Perimeter-Controlled Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
171
, pp.
123
140
.10.1016/S0045-7825(98)00248-5
13.
Petersson
,
J.
, and
Sigmund
,
O.
,
1998
, “
Slope Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
41
, pp.
1417
1434
.10.1002/(SICI)1097-0207(19980430)41:8<1417::AID-NME344>3.0.CO;2-N
14.
Zhou
,
M.
,
Shyy
,
Y. K.
, and
Thomas
,
H. L.
,
2001
, “
Checkerboard and Minimum Member Size Control in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
21
, pp.
152
158
.10.1007/s001580050179
15.
Jang
,
G. W.
,
Jeong
,
J. H.
,
Kim
,
Y. Y.
,
Sheen
,
D.
,
Park
,
C.
, and
Kim
,
M. N.
,
2003
, “
Checkerboard-Free Topology Optimization Using Non-Conforming Finite Elements
,”
Int. J. Numer. Methods Eng.
,
57
, pp.
1717
1735
.10.1002/nme.738
16.
Jang
,
G. W.
,
Lee
,
S.
,
Kim
,
Y. Y.
, and
Sheen
,
D.
,
2005
, “
Topology Optimization Using Non-Conforming Finite Elements: Three-Dimensional Case
,”
Int. J. Numer. Methods Eng.
,
63
, pp.
859
875
.10.1002/nme.1302
17.
Belytschko
,
T.
,
Xiao
,
S. P.
, and
Parimi
,
C.
,
2003
, “
Topology Optimization With Implicit Functions and Regulation
,”
Int. J. Numer. Methods Eng.
,
57
, pp.
1177
1196
.10.1002/nme.824
18.
Rahmatalla
,
S. F.
, and
Swan
,
C. C.
,
2004
, “
A Q4/Q4 Continuum Structural Topology Optimization Implementation
,”
Struct. Multidiscip. Optim.
,
27
, pp.
130
135
.10.1007/s00158-003-0365-9
19.
Matsui
,
K.
, and
Terada
,
K.
,
2004
, “
Continuous Approximation of Material Distribution for Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
59
, pp.
1925
1944
.10.1002/nme.945
20.
Guest
,
J. K.
,
Prevost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
238
254
.10.1002/nme.1064
21.
Saxena
,
A.
,
2008
, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
,
130
, p.
082304
.10.1115/1.2936891
22.
Jain
,
C.
, and
Saxena
,
A.
,
2010
, “
An Improved Material-Mask Overlay Strategy for Topology Optimization of Structures and Compliant Mechanisms
,”
ASME J. Mech. Des.
,
132
, p.
061006
.10.1115/1.4001530
23.
Saxena
,
A.
,
2011
, “
An Adaptive Material Mask Overlay Method: Modifications and Investigations on Binary, Well Connected Robust Compliant Continua
,”
ASME J. Mech. Des.
,
133
, p.
041004
.10.1115/1.4003804
24.
Saxena
,
A.
,
2011
, “
Are Circular Shaped Masks Adequate in Adaptive Mask Overlay Topology Synthesis Method
,”
ASME J. Mech. Des.
,
133
, p.
011001
.10.1115/1.4002973
25.
Zhou
,
H.
,
2010
, “
Topology Optimization of Compliant Mechanisms Using Hybrid Discretization Model
,”
ASME J. Mech. Des.
,
132
, p.
111003
.10.1115/1.4002663
26.
Zhou
,
H.
, and
Killekar
,
P. P.
,
2011
, “
The Modified Quadrilateral Discretization Model for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
, p.
111007
.10.1115/1.4004986
27.
Black
,
J.
,
2008
,
Lean Production
,
Industrial Press
,
New York
.
28.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
29.
Kim
,
I. Y.
, and
Weck
,
O. L.
,
2005
, “
Variable Chromosome Length Genetic Algorithm for Progressive Refinement in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
29
, pp.
445
456
.10.1007/s00158-004-0498-5
30.
Kim
,
D. S.
,
Jung
,
D. H.
, and
Kim
,
Y. Y.
,
2008
, “
Multiscale Multiresolution Genetic Algorithm With a Golden Sectioned Population Composition
,”
Int. J. Numer. Methods Eng.
,
74
, pp.
349
367
.10.1002/nme.2172
31.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
,
1994
, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
, pp.
1005
1012
.10.1115/1.2919480
32.
Chapman
,
C. D.
, and
Jakiela
,
M. J.
,
1996
, “
Genetic Algorithm-Based Structural Topology Design With Compliance and Topology Simplification Considerations
,”
ASME J. Mech. Des.
,
118
, pp.
89
98
.10.1115/1.2826862
33.
Kane
,
C.
, and
Schoenauer
,
M.
,
1996
, “
Topological Optimum Design Using Genetic Algorithms
,”
Control Cybern.
,
25
, pp.
1059
1088
.
34.
Duda
,
J. W.
, and
Jakiela
,
M. J.
,
1997
, “
Generation and Classification of Structural Topologies Genetic Algorithm Speciation
,”
ASME J. Mech. Des.
,
119
, pp.
127
131
.10.1115/1.2828774
35.
Wang
,
S. Y.
, and
Tai
,
K.
,
2005
, “
Structural Topology Design Optimization Using Algorithms With a Bit-Array Representation
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
3749
3770
.10.1016/j.cma.2004.09.003
36.
Tai
,
K.
, and
Prasad
,
J.
,
2007
, “
Target-Matching Test Problem for Multiobjective Topology Optimization Using Genetic Algorithm for Progressive Refinement in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
34
, pp.
333
345
.10.1007/s00158-006-0082-2
37.
Wang
,
N. F.
, and
Tai
,
K.
,
2008
, “
Design of Grip-and-Move Manipulators Using Symmetric Path Generating Compliant Mechanisms
,”
ASME J. Mech. Des.
,
130
, p.
112306
.10.1115/1.2976790
38.
Wang
,
N. F.
, and
Tai
,
K.
,
2010
, “
Design of 2-DOF Compliant Mechanisms to Form Grip-and-Move Manipulators for 2D Workspace
,”
ASME J. Mech. Des.
,
132
, p.
031007
.10.1115/1.4001213
39.
Deo
,
N.
,
1990
,
Graph Theory With Applications to Engineering and Computer Science
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Haupt
,
R. L.
, and
Haupt
,
S. E.
,
2004
,
Practical Genetic Algorithms
,
2nd ed.
,
Wiley
,
New York
.
41.
Haslinger
,
J.
, and
Makinen
,
R. A. E.
,
2003
,
Introduction to Shape Optimization: Theory, Approximation and Computation
,
Siam
,
Philadelphia, PA
.
You do not currently have access to this content.