This paper presents a multidisciplinary design optimization (MDO) framework for automated design of a modular industrial robot. The developed design framework seamlessly integrates high level computer aided design (CAD) templates (HLCt) and physics based high fidelity models for automated geometry manipulation, dynamic simulation, and structural strength analysis. In the developed framework, methods such as surrogate models and multilevel optimization are employed in order to speed up the design optimization process. This work demonstrates how a parametric geometric model, based on the concept of HLCt, enables a multidisciplinary framework for multi-objective optimization of a modular industrial robot, which constitutes an example of a complex heterogeneous system.

References

References
1.
Bowcutt
,
K. G.
,
2003
, “
A Perspective on the Future of Aerospace Vehicle Design
,”
12th AIAA International Space Planes and Hypersonic Systems and Technologies
,
Norfolk, VA
, AIAA Paper No. 2003-6957.
2.
Chapman
,
C. B.
, and
Pinfold
,
M.
,
1999
, “
Design Engineering—A Need to Rethink the Solution Using Knowledge Based Engineering
,”
J. Knowl. Based Syst.
,
12
(
5–6
), pp.
257
267
.10.1016/S0950-7051(99)00013-1
3.
Simpson
,
T. W.
, and
Martins
,
J. R. R. A.
,
2011
, “
Multidisciplinary Design Optimization for Complex Engineered Systems: Report From a National Science Foundation Workshop
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101002
.10.1115/1.4004465
4.
Giesing
,
J. P.
, and
Barthelemy
,
J.-F. M.
,
1998
, “
A Summary of Industry MDO Applications and Needs
,”
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
St. Louis, MO
, AIAA Paper No. 1998-4737.
5.
Mawhinney
,
P.
,
Price
,
M.
,
Curran
,
R.
,
Benard
,
E.
,
Murphy
,
A.
, and
Raghunathan
,
S.
,
2005
, “
Geometry-Based Approach to Analysis Integration for Aircraft Conceptual Design
,”
5th Annual Aviation Technology, Integration, and Operations (ATIO) forum
,
Washington, DC
, Paper No. AIAA-2005-7481.
6.
La Rocca
,
G.
, and
van Tooren
,
M. J. L.
,
2009
, “
Knowledge-Based Engineering Approach to Support Aircraft Multidisciplinary Design and Optimization
,”
J. Aircraft
,
46
(
6
), pp.
1875
1885
.10.2514/1.39028
7.
Tarkian
,
M.
,
2009
, “
Design Reuse and Automation—On High Level CAD Modeling for Multidisciplinary Design and Optimization
,”
Linköping Studies in Science and Technology
,
Licentiate thesis, Linköping, Sweden
, No. 1419.
8.
La Rocca
,
G.
, and
van Tooren
,
M. J. L.
,
2007
, “
A Knowledge Based Engineering Approach to Support Automatic Generation of FE Models in Aircraft Design
,”
45th AIAA Aerospace Science Meeting and Exhibit
,
Reno, NV
, AIAA Paper No. 2007-967.
9.
Allison
,
J. T.
,
Kokkolaras
,
M.
, and
Papalambros
P. Y.
,
2007
, “
On Selecting Single-Level Formulations for Complex System Design Optimization
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
898
906
.10.1115/1.2747632
10.
11.
Krenn
,
R.
,
Schäfer
,
B.
, and
Hirzinger
,
G.
,
2002
, “
Dynamics Simulation and Assembly Environment for Rapid Manipulator Design
,”
7th ESA Workshop on Advanced Space Technologies for Robotics and Automation
,
ESTEC, Noordwijk, Netherlands
, Nov. 19–21.
12.
Paredis
,
C. J. J.
,
Brown
,
H. B.
, and
Khosla
,
P. K.
,
1996
, “
A Rapidly Deployable Manipulator System
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
MN, Minneapolis
, pp.
1434
1439
.
13.
Johansson
B.
,
Ölvander
J.
, and
Pettersson
M.
,
2007
, “
Component Based Modeling and Optimization for Modular Robot Design
,”
ASME DAC’07
,
Las Vegas
,
Sept. 4–7
.
14.
Petterson
,
M.
,
Andersson
,
J.
, and
Krus
,
P.
,
2005
, “
Methods for Discrete Design Optimization
,”
Proceedings of ASME DETC05, Design Automation Conference
,
Long Beach, California
.
15.
Tarkian
,
M.
,
Ölvander
,
J.
,
Feng
X.
, and
Pettersson
,
M.
,
2009
, “
Design Automation of Modular Industrial Robots
,”
ASME CIE09
,
San Diego
.
16.
Pellicciari
,
M.
,
Berselli
,
G.
,
Leali
,
F.
,
Vergnano
,
A.
, and
Lennartson
,
B.
,
2011
, “
Object-Oriented Modeling of Industrial Manipulators With Application to Energy Optimal Trajectory Scaling
,” Washington DC, ASME Paper No. IDETC 2011.
17.
Vandenbrande
,
J. H.
,
Grandine
,
A.
, and
Hogan
,
T.
,
2006
,“
The Search for the Perfect Body: Shape Control for Multidisciplinary Design Optimization
,”
44th AIAA Aerospace Science Meeting and Exhibit
,
Reno, NV
, AIAA Paper No. 2006-928.
18.
Modelica Association
,
1999
, Modelica A Unified Object-Oriented Language for Physical Systems Modeling, Language Specification, http://www.modelica.org
19.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2009
,
Response Surface Methodology, Process and Product Optimization Using Designed Experiments
,
3rd ed.
,
John Wiley & Sons, Inc.
,
Hoboken, New Jersey
.
20.
Shan
,
S.
, and
Wang
,
G. G. M.
,
2010
, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051009
.10.1115/1.4001597
21.
Pebesma
,
E. J.
, and
Weeseling
,
C. G.
,
1998
, “
GSTAT: A Program for Geostatistical Modelling, Prediction and Simulation
,”
Comput. Sci.
,
24
(
1
), pp.
17
31
.http://dx.doi.org/10.1016/S0098-3004(97)00082-4
22.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
A Method to Manage Uncertainty During System-Level Conceptual Design
,”
ASME Design Engineering Technical Conference—Design Automation Conference
,
Long Beach, California
,
Sept. 24–28
, ASME Paper No. DETC2005-84984.
23.
Park
,
H.-S.
, and
Dang
,
X.-P.
,
2010
, “
Structural Optimization Based on CAD-CAE Integration and Metamodeling Techniques
,”
Comput.-Aided Des.
,
42
, pp.
889
902
.10.1016/j.cad.2010.06.003
24.
Yi
,
S. I.
,
Shin
,
J. K.
, and
Park
,
G. J.
,
2008
, “
Comparison of MDO Methods With Mathematical Examples
,”
Struct. Multidiscip. Optim.
,
35
(
5
), pp.
391
402
.10.1007/s00158-007-0150-2
25.
Cramer
,
E. J.
,
Dennis
,
J. E.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1993
, “
Problem Formulation for Multidisciplinary Optimization
,” Center for Research on Parallel Computation Rice University, Paper No. CRPC-TR93334.
26.
Haftka
,
R. T.
,
1985
, “
Simultaneous Analysis and Design
,”
AIAA J.
,
23
(
7
), pp.
1099
1103
.10.2514/3.9043
27.
Fujita
,
K.
, and
Yoshida
,
H.
,
2004
, “
Product Variety Optimization Simultaneously Designing Module Combination and Module Attributes
,”
Concurr. Eng. Res. Appl.
,
12
(
2
), pp.
105
118
.10.1177/1063293X04044758
28.
Ferguson
,
S. F.
,
Kasprzak
,
E. M.
, and
Lewis
,
K.
,
2008
, “
Design of a Family of Reconfigurable Vehicles Using Multilevel Multidisciplinary Design Optimization
,”
Struct. Multidiscip. Optim. J.
,
39
(
2
), pp.
171
186
.10.1007/s00158-008-0319-3
29.
McAllister
,
C. D.
, and
Simpson
,
T. W.
,
2003
, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
124
130
.10.1115/1.1543978
30.
Venter
,
G.
, and
Sobieszczanski-Sobieski
,
J.
,
2004
, “
Multidisciplinary Optimization of a Transport Aircraft Wing Using Particle Swarm Optimization
,”
Struct. Multidiscip. Optim.
,
26
(
1–2
), pp.
121
131
.10.1007/s00158-003-0318-3
31.
Sobieszczanski-Sobieski
,
J.
, and
Kodiyalam
,
S.
,
2001
, “
BLISS/S: A New Method for Two-Level Structural Optimization
,”
Struct. Multidiscip. Optim.
,
21
(
1
), pp.
1
13
.10.1007/s001580050163
32.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1998
, “
Multiobjective Optimization and Multiple Constraint Handling With Evolutionary Algorithms—Part I: A Unified Formulation
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
,
28
(
1
), pp.
26
37
.10.1109/3468.650319
33.
Nelder
,
J.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.10.1093/comjnl/7.4.308
You do not currently have access to this content.