An integrated model for gear pair that combines the dynamic load with the mixed elastohydrodynamic lubrication (EHL) theory is proposed in this paper covering the film squeeze effect as well as the friction force generated from the rough surfaces. Comparisons between the two models of load which are, respectively, based on minimum elastic potential energy (MEPE) criterion and dynamic motion equations built up in this paper are discussed. The results show that at low speed the loads calculated by the two models are similar. However, with increasing speed, the load exhibits dynamic characteristics gradually and reaches the highest value at resonant speed. Besides, the effects of the helix angle and the lubricant viscosity are also analyzed. Increasing the ambient viscosity could intensify the film stiffness and viscous damping. Gear with larger helix angle could weaken the impact phenomenon at the shift points where one tooth-pair disengages. Moreover, it is symmetric with regard to the pressure and film thickness across the face width for spur gear. Differently, the pressure for helical gear has a higher value at the dedendum of pinion where the film becomes thinner. In addition, speeding up the pinion would generally result in higher dynamic load and film pressure but thicker film thickness.

References

References
1.
Li
,
S.
,
2002
, “
Gear Contact Model and Loaded Tooth Contact Analysis of a Three-Dimensional, Thin-Rimmed Gear
,”
ASME J. Mech. Des.
,
127
, pp.
511
517
.10.1115/1.1485290
2.
Guilbaut
,
R.
,
Gosselin
,
C.
, and
Cloutier
,
L.
,
2005
, “
Express Model for Load Sharing and Stress Analysis in Helical Gears
,”
ASME J. Mech. Des.
,
127
, pp.
1161
1172
.10.1115/1.1992509
3.
Cooley
,
C. G.
,
Parker
,
R. G.
, and
Vijayakar
,
S. M.
,
2011
, “
A Frequency Domain Finite Element Approach for Three-Dimensional Gear Dynamics
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
0410041
.10.1115/1.4003399
4.
Pedrero
,
J. I.
,
Vallejo
,
I. I.
, and
Pleguezuelos
,
M.
,
2007
, “
Calculation of Tooth Bending Strength and Surface Durability of High Transverse Contact Ratio Spur and Helical Gear Drives
,”
ASME J. Mech. Des.
,
129
, pp.
69
74
.10.1115/1.2403773
5.
Pedrero
,
J. I.
,
Pleguezuelos
,
M.
, and
Artoes
,
M.
,
2010
, “
Load Distribution Model Along the Line of Contact for Involute External Gears
,”
Mech. Mach. Theory
,
45
, pp.
780
794
.10.1016/j.mechmachtheory.2009.12.009
6.
Baud
,
S.
, and
Velex
,
P.
,
2002
, “
Static and Dynamic Tooth Loading in Spur and Helical Geared Systems-Experiments and Model Validation
,”
ASME J. Mech. Des.
,
124
, pp.
334
346
.10.1115/1.1462044
7.
Velex
,
P.
, and
Ajmi
,
M.
,
2007
, “
Dynamic Tooth Loads and Quasi-Static Transmission Errors in Helical Gears-Approximate Dynamic Factor Formulae
,”
Mech. Mach. Theory
,
42
, pp.
1512
1526
.10.1016/j.mechmachtheory.2006.12.009
8.
Tamminana
,
V. K.
,
Kahraman
,
A.
, and
Vijayakar
,
S.
,
2007
, “
A Study of the Relationship Between the Dynamic Factors and the Dynamic Transmission Error of Spur Gear Pairs
,”
ASME J. Mech. Des.
,
129
, pp.
75
84
.10.1115/1.2359470
9.
Karpat
,
F.
,
Osire
,
S. E.
, and
Cavdar
,
K.
,
2008
, “
Dynamic Analysis of Involute Spur Gears With Asymmetric Teeth
,”
Int. J. Mech. Sci.
,
50
, pp.
1598
1610
.10.1016/j.ijmecsci.2008.10.004
10.
Liu
,
G.
, and
Parker
,
R. G.
,
2008
, “
Dynamic Modeling and Analysis of Tooth Profile Modification for Multimesh Gear Vibration
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121402
.10.1115/1.2976803
11.
He
,
S.
, and
Singh
,
R.
,
2008
, “
Dynamic Transmission Error Prediction of Helical Gear Pair Under Sliding Friction Using Floquet Theory
,”
ASME J. Mech. Des.
,
130
, p.
052603
.10.1115/1.2890115
12.
Hua
,
D. Y.
, and
Khonsari
,
M.
,
1995
, “
Application of Transient Elastohydrodynamic Lubrication Analysis for Gear Transmissions
,”
Tribol. Trans.
,
38
, pp.
905
913
.10.1080/10402009508983487
13.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Poon
,
S. Y.
,
1972
, “
A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication
,”
Wear
,
19
, pp.
91
108
.10.1016/0043-1648(72)90445-0
14.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2008
, “
Performance of Spur Gears Considering Surface Roughness and Shear Thinning Lubricant
,”
ASME J. Tribol.
,
130
(
2
), p.
021503
.10.1115/1.2805431
15.
Larsson
,
R.
,
1997
, “
Transient Non-Newtonian Elastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Wear
,
207
, pp.
67
73
.10.1016/S0043-1648(96)07484-4
16.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
Trans. ASME J. Lubr. Technol.
,
101
(
4
), pp.
220
229
.10.1115/1.3453329
17.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.10.1115/1.3453103
18.
Wu
,
C. W.
, and
Zheng
,
L. Q.
,
1989
, “
An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor
,”
Trans. ASME J. Tribol.
,
111
(
1
), pp.
188
191
.10.1115/1.3261872
19.
Zhu
,
D.
, and
Ai
,
X. L.
,
1997
, “
Point Contact EHL Based on Optically Measured Three-Dimensional Rough surfaces
,”
ASME J. Tribol.
,
119
, pp.
375
384
.10.1115/1.2833498
20.
Wang
,
W. Z.
,
Liu
,
Y. C.
, and
Wang
,
H
,
2004
, “
A Computer Thermal Model of Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
126
, pp.
162
170
.10.1115/1.1631012
21.
Li
,
S.
, and
Kahraman
,
A. A.
,
2010
, “
Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,”
ASME J. Tribol.
,
132
, p.
011501
.10.1115/1.4000270
22.
Liu
,
H.
,
Mao
,
K.
, and
Zhu
,
C. C.
,
2012
, “
Mixed Lubricated Line Contact Analysis for Spur Gears Using a Deterministic Model
,”
ASME J. Tribol.
,
134
(
2
), p.
021501
.10.1115/1.4005771
23.
Wang
,
K. L.
, and
Cheng
,
H. S.
,
1981
, “
A Numerical Solution to the Dynamic Load, Film Thickness and Surface Temperatures in Spur Gears, Part I: Analysis
,”
ASME J. Mech. Des.
,
103
, pp.
177
187
.10.1115/1.3254859
24.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2007
, “
An Analysis of the Automotive Driveline Dynamic Behavior Focusing on the Influence of the Oil Squeeze Effect on the Idle Rattle Phenomenon
,”
J. Sound Vib.
,
303
, pp.
858
872
.10.1016/j.jsv.2007.02.008
25.
Umezawa
,
K.
,
Suzuki
,
T.
, and
Sato
,
T.
1986
, “
Vibration of Power Transmission Helical Gears (Approximate Equation of Tooth Stiffness)
,”
Bull. JSME
,
29
(
251
), pp.
1605
1611
.10.1299/jsme1958.29.1605
26.
Cai
,
Y.
,
1995
, “
Simulation on the Rotational Vibration of Helical Gears in Consideration of the Tooth Separation Phenomenon (A New Stiffness Function of Helical Involute Tooth Pair)
,”
ASME J. Mech. Des.
,
117
, pp.
460
469
.10.1115/1.2826701
27.
Moes
,
H.
,
1992
, “
Optimum Similarity Analysis With Applications to Elastohydrodynamic Lubrication
,”
Wear
,
159
, pp.
57
66
.10.1016/0043-1648(92)90286-H
28.
Yang
,
P.
, and
Yang
,
P. R.
,
2006
, “
Theory of Thermal Elastohydrodynamic Lubrication for Helical Gears
,”
J. Mech. Eng.
,
42
(
10
), pp.
43
48
(in Chinese).10.3901/JME.2006.10.043
29.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
New York
.
30.
Ichimaru
,
K.
, and
Hirano
,
F.
,
1974
, “
Dynamic Behavior of Heavy-Loaded Spur Gears
,”
Trans. ASME J. Eng. Ind.
,
5
, pp.
373
381
.10.1115/1.3438339
You do not currently have access to this content.