The introduction of intrinsic compliance in the actuation system of assistive robots improves safety and dynamical adaptability. Furthermore, in the case of wearable robots for gait assistance, the exploitation of conservative compliant elements as energy buffers can mimic the intrinsic dynamical properties of legs during locomotion. However, commercially available compliant components do not generally allow to meet the desired requirements in terms of admissible peak load, as typically required by gait assistance, while guaranteeing low stiffness and a compact and lightweight design. This paper presents a novel compact monolithic torsional spring to be used as the basic component of a modular compliant system for series elastic actuators. The spring, whose design was refined through an iterative FEA-based optimization process, has an external diameter of 85 mm, a thickness of 3 mm and a weight of 61.5 g. The spring, characterized using a custom dynamometric test bed, shows a linear torque versus angle characteristic. The compliant element has a stiffness of 98N·m/rad and it is capable of withstanding a maximum torque of 7.68N·m. A good agreement between simulated and experimental data were observed, with a maximum resultant error of 6%. By arranging a number of identical springs in series or in parallel, it is possible to render different torque versus angle characteristics, in order to match the specific applications requirements.

References

References
1.
De Santis
,
A.
,
Siciliano
,
B.
,
De Luca
,
A.
, and
Bicchi
,
A.
,
2008
, “
An Atlas of Physical Human-Robot Interaction
,”
Mech. Mach. Theory
,
43
(
3
), pp.
253
270
.10.1016/j.mechmachtheory.2007.03.003
2.
Van Ham
,
R.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.10.1109/MRA.2009.933629
3.
Pratt
,
G.
, and
Williamson
,
M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction and Cooperative Robots
, Vol.
1
, pp.
399
406
.
4.
Robinson
,
D.
,
2000
, “
Design and Analysis of Series Elasticity in Closed-Loop Actuator Force Control
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
5.
Paluska
,
D.
, and
Herr
,
H.
,
2006
, “
The Effect of Series Elasticity on Actuator Power and Work Output: Implications for Robotic and Prosthetic Joint Design
,”
Rob. Auton. Syst.
,
54
(
8
), pp.
667
673
.10.1016/j.robot.2006.02.013
6.
Hurst
,
J.
,
Rizzi
,
A.
, and
Hobbelen
,
D.
,
2004
, “
Series Elastic Actuation: Potential and Pitfalls
,”
International Conference on Climbing and Walking Robots
.
7.
Vallery
,
H.
,
Veneman
,
J.
,
van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
van der Kooij
,
H.
,
2008
, “
Compliant Actuation of Rehabilitation Robots: Benefits and Limitations of Series Elastic Actuators
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
60
69
.10.1109/MRA.2008.927689
8.
Pratt
,
G.
,
2000
, “
Legged Robots at MIT: What’s New Since Raibert?
,”
IEEE Rob. Autom. Mag.
,
7
(
3
), pp.
15
19
.10.1109/100.876907
9.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F.
, and
van der Kooij
,
H.
,
2006
, “
A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Rob. Res.
,
25
(
3
), pp.
261
281
.10.1177/0278364906063829
10.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2010
, “
A Compact Rotary Series Elastic Actuator for Knee Joint Assistive System
,”
Proceedings of 2010 IEEE International Conference on Robotics and Automation
, pp.
2940
2945
.
11.
Tsagarakis
,
N.
,
Laffranchi
,
M.
,
Vanderborght
,
B.
, and
Caldwell
,
D.
,
2009
, “
A Compact Soft Actuator Unit for Small Scale Human Friendly Robots
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
4356
4362
.
12.
Yoon
,
S.
,
Kang
,
S.
,
Kim
,
S.
,
Kim
,
Y.
,
Kim
,
M.
, and
Lee
,
C.
,
2003
, “
Safe Arm With MR-Based Passive Compliant Joints and Visco-Elastic Covering for Service Robot Applications
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
3
, pp.
2191
2196
.
13.
Wyeth
,
G.
,
2008
, “
Demonstrating the Safety and Performance of a Velocity Sourced Series Elastic Actuator
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
3642
3647
.
14.
Lagoda
,
C.
,
Schouten
,
A.
,
Stienen
,
A.
,
Hekman
,
E.
, and
van der Kooij
,
H.
,
2010
, “
Design of an Electric Series Elastic Actuated Joint for Robotic Gait Rehabilitation Training
,”
Proceedings of 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
21
26
.
15.
Stienen
,
A.
,
Hekman
,
E.
,
ter Braak
,
H.
,
Aalsma
,
A.
,
van der Helm
,
F.
, and
van der Kooij
,
H.
,
2010
, “
Design of a Rotational Hydroelastic Actuator for a Powered Exoskeleton for Upper Limb Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
57
(
3
), pp.
728
735
.10.1109/TBME.2009.2018628
16.
Knox
,
B.
, and
Schmiedeler
,
J. P.
,
2009
, “
A Unidirectional Series-Elastic Actuator Design Using a Spiral Torsion Spring
,”
ASME J. Mech. Des.
,
131
(
125001
), pp.
1
5
.10.1115/1.4000252
17.
Wyeth
,
G.
,
2006
, “
Control Issues for Velocity Sourced Series Elastic Actuators
,”
Proceedings of Australasian Conference on Robotics and Automation
.
18.
Veneman
,
J.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F.
, and
van der Kooij
,
H.
,
2005
, “
Design of a Series Elastic- and Bowden Cable-Based Actuation System for Use as Torque-Actuator in Exoskeleton-Type Training
,”
Proceedings of 9th IEEE International Conference on Rehabilitation Robotics
, pp.
496
499
.
19.
Zhang
,
L.
,
Nuber
,
G.
,
Butler
,
J.
,
Bowen
,
M.
, and
Rymer
,
W.
,
1998
, “
In Vivo Human Knee Joint Dynamic Properties as Functions of Muscle Contraction and Joint Position
,”
J. Biomech.
,
31
(
1
), pp.
71
76
.10.1016/S0021-9290(97)00106-1
20.
Loram
,
I.
, and
Lakie
,
M.
,
2002
, “
Direct Measurement of Human Ankle Stiffness During Quiet Standing: The Intrinsic Mechanical Stiffness is Insufficient for Stability
,”
J. Physiol.
,
545
(
3
), pp.
1041
1053
.10.1113/jphysiol.2002.025049
21.
JudgeRoy
,
J. O.
,
Davis
,
B.
, and
Ounpuu
,
S.
,
1996
, “
Step Length Reductions in Advanced Age: The Role of Ankle and Hip Kinetics
,”
J. Gerontol. Ser. A: Biol. Sci. Med. Sci.
,
51
(
6
), pp.
303
312
.10.1093/gerona/51A.6.M303
22.
Murray
,
M. P.
,
Kory
,
R. C.
, and
Clarkson
,
B. H.
,
1969
, “
Walking Patterns in Healthy Old Men
,”
J. Gerontol.
,
24
(
2
), pp.
169
178
.10.1093/geronj/24.2.169
23.
Rose
,
J.
, and
Gamble
,
J.
,
2005
,
Human Walking
,
Lippincott
,
USA
.
24.
Menz
,
H. B.
,
Lord
,
S. R.
, and
Fitzpatrick
,
R. C.
,
2003
, “
Age-Related Differences in Walking Stability
,”
Age Ageing
,
32
(
2
), pp.
137
142
.10.1093/ageing/32.2.137
25.
Winter
,
D.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
26.
Sensinger
,
J. W.
, and
ff. Weir
,
R. F.
,
2006
, “
Improvements to Series Elastic Actuators
,”
Proceedings of 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
, pp.
1
7
.
27.
Tagliamonte
,
N.
,
Sergi
,
F.
,
Carpino
,
G.
,
Accoto
,
D.
, and
Guglielmelli
,
E.
,
2010
, “
Design of a Variable Impedance Differential Actuator for Wearable Robotics Applications
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
2639
2644
.
28.
Juvinall
,
R. C.
, and
Marshek
,
K. M.
,
2006
,
Fundamentals of Machine Component Design
,
John Wiley & Sons
,
New York
, Chap. 8, pp.
290
347
.
You do not currently have access to this content.