The paper presents a novel technique for the kinematic analysis of bevel gear trains using the incidence matrices of an edge-oriented graph of the mechanism. The kinematic equations are then obtained in matrix form using a cycle basis from a cycle matroid. These equations can be systematically generated, and allow for an efficient computation of the angular velocities of the gears and planet carriers of the mechanism without employing time derivative operations. As illustrated in the paper, the method is applicable to bevel gear trains of any number of gears or degrees of freedom.

References

References
1.
Kutzbach
,
K.
, 1929, “
Mechanische Leitungverzweigung; ihre Gasetze und Anwendungen
,”
Machinenbau, der Betrieb
,
8
(
21
), pp.
710
716
.
2.
Ravigneaux
,
P.
, 1930, “
Theorie Nouvelle sur les Trains Epicycloidaus et les Mouvements Relatifs
,”
La Technique Automobile et Aerienne
,
21
(
151
), pp.
97
106
.
3.
Levai
,
Z.
, 1967, “
Theorie des idealen einfachen Planetengetriebes
,”
VDIZ. (1857-1968)
,
109
, pp.
501
505
.
4.
Willis
,
R.
, 1870,
Principles of Mechanism
,
2nd ed.
,
Longmans, Green
,
London
.
5.
Martin
,
G. H.
, 1969,
Kinematics and Dynamics of Machines
,
McGraw-Hill
,
New York
, pp.
298
306
.
6.
Norton
,
R. L.
, 2004,
Design of Machinery
,
McGraw-Hill
,
New York
, pp.
497
499
.
7.
Gibson
,
D.
and
Kramer
,
S.
, 1984, “
Symbolic Notation and Kinematic Equations of Motion of the Twenty-Two Basic Spur Planetary Gear Trains
,”
ASME J. Mech., Transm., Autom. Des.
,
106
, pp.
333
340
.
8.
Levai
,
Z.
, 1968, “
Structure and Analysis of Planetary Gear Trains
,”
J. Mech.
,
3
, pp.
131
148
.
9.
Voinea
,
R.
and
Atanasiu
,
M.
1964,
New Analytical Methods in Mechanism Theory
,
Editura Tehnica
,
Bucharest
(in Romanian).
10.
Glover
,
J. H.
, January 1964, “
Planetary Gear Systems
,”
Prod. Eng.
, pp.
59
68
.
11.
Voinea
,
R.
,
Atanasiu
,
M.
,
Iordache
,
M.
, and
Talpasanu
I.
, 1983, “
Determination of the Kinematic Parameters for a Planar Linkage Mechanism by the Independent Loop Method
,” Proceedings of the 5th International Conference on Control Systems and Computer Science, Bucharest, 1, pp.
20
23
.
12.
Freudenstein
,
F.
, 1971, “
An Application of Boolean Algebra to the Motion of Epicyclic Drives
,”
ASME J. Eng. Ind.
,
93
, pp.
176
182
.
13.
Tsai
,
L. W.
, 1988, “
The Kinematics of Spatial Robotic Bevel-Gear Trains
,”
IEEE J. Rob. Autom.
,
4
, pp.
150
155
.
14.
Hsieh
,
H. I.
and
Tsai
L. W.
, 1995, “
Kinematic Analysis of Epicylic-Type Transmissions Mechanisms Using the Concept of Fundamental Gear Entities”
ASME DETC
,
82
, pp.
545
552
.
15.
Hsu
,
C. H.
and
Lam
,
K. T.
, 1992, “
A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains
,”
ASME J. Mech. Des.
,
114
, pp.
196
200
.
16.
Nelson
,
C. A.
and
Cipra
,
R. J.
, 2005, “
Simplified Kinematic Analysis of Bevel Epicyclic Gear Trains With Application to Power-Flow and Efficiency Analyses
,”
ASME J. Mech. Des.
,
127
, pp.
278
286
.
17.
Gudal
,
S.
,
Pan
,
Y.
,
Liou
,
S. Y.
,
Sundararajan
,
V.
,
Antonetti
,
D.
, and
Wright
,
P. W.
, 2004, “
Design System for Composite Transmission Error Prediction for Automatic Transmission
,” 2004 ASME DETC, Paper No. DETC2004-57721.
18.
Shai
,
O.
and
Preiss
,
K.
, 1999, “
Graph Theory Representation of Engineering Systems and Their Embedded Knowledge
,”
Artif. Intell. Eng.
,
13
(
3
), pp.
273
284
.
19.
Talpasanu
,
I.
, 2004, “
Kinematics and Dynamics of Mechanical Systems Based on Graph-Matroid Theory
,” Ph.D. dissertation, University of Texas at Arlington, Arlington.
20.
Talpasanu
,
I.
,
Yih
,
T. C.
, and
Simionescu
,
P.A.
, 2006, “
Application of Matroid Method in Kinematic Analysis of Parallel Axes Epicyclic Gear Trains
,”
ASME J. Mech. Des.
,
128
, pp.
1307
1314
.
21.
Dunn
,
A.
,
Houser
,
D.
, and
Lim
,
T.C.
, 1999, “Methods for Researching Gear Whine in Automotive Transaxles, Proceedings of the Noise and Vibrations Conference, SAE Technical Paper.
22.
Kahraman
,
A.
, 1994, “
Planetary Gear Train Dynamics
,”
ASME J. Mech. Des.
,
116
, pp.
713
720
.
23.
Balbanian
,
N.
and
Bickart
,
T.A.
, 1969,
Electrical Network Theory
,
John Wiley
,
New York
.
24.
Fenves
,
S. J.
and
Branin
,
F.H.
, 1963, “
Network Topological Formulation of Structural Analysis
,”
ASCE J. Structural Div.
,
89
,
483
514
.
25.
Whitney
,
H.
, 1935, “
On the Abstract Properties of Linear Dependence
,”
Am. J. Math.
57
, pp.
509
533
.
26.
Recski
,
A.
, 1989,
Matroid Theory and its Applications in Electric Network Theory and in Statics
,
Springer
,
New York
.
27.
Kaveh
,
A.
, 1997,
Optimal Structural Analysis
,
Research Studies
(
John Wiley
),
Exeter, U.K
.
28.
Shai
,
O.
, 2001, “
The Multidisciplinary Combinatorial Approach and its Applications in Engineering
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
15
(
2
), pp.
109
144
.
29.
Ball
,
R. S.
, 1998,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, England
.
30.
Pennock
,
G. R.
, and
Alwerdt
,
J. J.
, 2007, “
Duality Between the Kinematics of Gear Trains and the Statics of Beam Systems
,”
Mech. Mach. Theory
,
42
, pp.
1527
1546
.
31.
Selgado
,
D. R.
and
Del Castillo
,
J. M.
, 2005, “
A Method for Detecting Degenerate Structures in Planetary Gear Trains
,”
Mech. Mach. Theory
,
40
, pp.
948
962
.
You do not currently have access to this content.