Great design often results from intelligently balancing tradeoffs and leveraging of synergies between multiple product goals. While the engineering design community has numerous tools for managing the interface between functional goals in products, there are currently no formalized methods to concurrently optimize stylistic form and functional requirements. This research develops a method to coordinate seemingly disparate but highly related goals of stylistic form and functional constraints in computational design. An artificial neural network (ANN) based machine learning system was developed to model surveyed consumer judgments of stylistic form quantitatively. Coupling this quantitative model of stylistic form with a genetic algorithm (GA) enables computers to concurrently account for multiple objectives in the domains of stylistic form and more traditional functional performance evaluation within the same quantitative framework. This coupling then opens the door for computers to automatically generate products that not only work well but also convey desired styles to consumers.

References

References
1.
Birkhoff
,
G. D.
, 1933,
Aesthetic Measure
,
Harvard University Press
,
Cambridge
.
2.
Pye
,
D.
, 1969,
The Nature of Design
,
Reinhold Books Corporation
,
New York
.
3.
Stiny
,
G.
, 1980, “
Introduction to Shape and Shape Grammars
,”
Environ. Plann. B
,
7
(
3
), pp.
343
351
.
4.
Cagdas
,
G.
, 1996, “
A Shape Grammar: The Language of Traditional Turkish Houses
,”
Environ. Plann. B
,
23
(
4
), pp.
443
464
.
5.
Agarwal
,
M.
, and
Cagan
,
J.
, 1998, “
A Blend of Different Tastes: The Language of Coffee Makers
,”
Environ. Plan. B: Plan. Des.
,
25
(
2
), pp.
205
226
.
6.
Pugliese
,
M.
and
Cagan
,
J.
, 2002, “
Capturing a Rebel: Modeling the Harley-Davidson Brand through a Motorcycle Shape Grammar
,”
Res. Eng. Des.
,
13
(
3
), pp.
139
156
.
7.
Orsborn
,
S.
, and
Cagan
,
J.
, 2009, “
Automatically Generating Form Concepts According to Consumer Preference: A Shape Grammar Implementation With Software Agents
,”
ASME J. Mech. Des.
,
131
, p.
121007
.
8.
Orsborn
,
S.
, and
Cagan
,
J.
, 2009, “
Multiagent Shape Grammar Implementation: Automatically Generating Form Concepts According to a Preference Function
,”
J. Mech. Des.
,
131
, p.
121007
.
9.
Hsiao
,
S. W.
, and
Liu
,
M. C.
, 2002, “
A Morphing Method for Shape Generation and Image Prediction in Product Design
,”
Des. Stud.
,
23
(
5
), pp.
533
556
.
10.
Smith
,
R. C.
,
Pawlicki
,
R.
,
Kokai
,
I.
,
Finger
,
J.
, and
Vetter
,
T.
, 2007, “
Navigating in a Shape Space of Registered Models
,”
IEEE Trans. Vis. Comput. Graph.
,
13
(
6
), pp.
1552
1559
.
11.
Hsiao
,
S. W.
, and
Huang
,
H. C.
, 2002, “
A Neural Network Based Approach for Product Form Design
,”
Des. Stud.
,
23
(
1
), pp.
67
84
.
12.
Ranscombe
,
C.
,
Hicks
,
B.
,
Mullineux
,
G.
, and
Singh
,
B.
, 2011, “
Visually Decomposing Vehicle Images: Exploring the Influence of Different Aesthetic Features on Consumer Perception of Brand
,”
Des. Stud.
,
33
(
4
), pp.
319
341
.
13.
Hazelrigg
,
G. A.
, 1998, “
A Framework for Decision-Based Engineering Design
,”
J. Mech. Des.
,
120
(
4
), pp.
653
659
.
14.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
J. Mech. Des.
,
122
(
4
), pp.
411
418
.
15.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2005, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
514
523
.
16.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
, 2006, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1196
1204
.
17.
Sylcott
,
B.
,
Cagan
,
J.
, and
Tabibnia
,
G.
, 2011 Pending, “
Understanding of Emotions and Reasoning During Consumer Tradeoff Between Function and Aesthetics in Product Design
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
.
18.
Norman
,
D.
, 2004,
Emotional Design: Why we Love (or Hate) Everyday Things
,
Basic Books
,
New York
.
19.
Govers
,
P.
,
Hekkert
,
P.
, and
Schoormans
,
J. P. L.
, 2003,
Happy, Cute and Tough: Can Designers Create a Product Personality that Consumers Understand?
,
CRC Press
,
Boca Raton, FL
, pp.
345
349
.
20.
Nagamachi
,
M.
, 2002, “
Kansei Engineering as a Powerful Consumer-Oriented Technology for Product Development
,”
Appl. Ergon
,
33
, pp.
289
294
.
21.
Bouchard
,
C.
,
Lim
,
D.
, and
Aoussat
,
A.
, 2003, “
Development of a Kansei Engineering System for Industrial Design: Identification of Input Data for KES
,”
6th Asian Design International Conference
,
ADC
,
Tsukuba
.
22.
Osgood
,
C.
,
Suci
,
G.
, and
Tannenbaum
,
P.
, 1957,
The Measurement of Meaning
,
University of Illinois Press
,
Urbana, Il
.
23.
Reid
,
T.
,
Gonzalez
,
R.
, and
Papalambros
,
P.
, 2009, “
A Methodology for Quantifying the Perceived Environmental Friendliness of Vehicle Silhouettes in Engineering Design
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
.
24.
Achiche
,
S.
, and
Ahmed
,
S.
, 2008, “
Mapping Shape Geometry and Emotions Using Fuzzy Logic
,”
Proceedings from ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
.
25.
Yannou
,
B.
,
Dihlmann
,
M.
, and
Awedikian
,
R.
, 2008, “
Evolutive Design of Car Silhouettes
,”
Proceedings from ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
.
26.
Kim
,
H. S.
, and
Cho
,
S. B.
, 2000, “
Application of Interactive Genetic Algorithm to Fashion Design
,”
Eng. Applic. Artif. Intell.
,
13
(
6
), pp.
635
644
.
27.
Yanagisawa
,
H.
, and
Fukuda
,
S.
, 2004, “
Development of Interactive Industrial Design Support System Considering Customer’s Evaluation
,”
JSME Int. J.
,
47
(
2
), pp.
762
769
.
28.
Takagi
,
H.
, 2001, “
Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation
,”
Proc. IEEE
,
89
(
9
), pp.
1275
1296
.
29.
Mitchell
,
T.
, 1997,
Machine Learning
,
McGraw Hill
,
NewYork
.
30.
Fukushima
,
K.
, 1988, “
Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern Recognition
,”
Neural Networks
,
1
(
2
), pp.
119
130
.
31.
Fukushima
,
K.
, 2003, “
Neocognitron for Handwritten Digit Recognition
,”
Neurocomputing
,
51
, pp.
161
180
.
32.
Yasuda
,
K.
,
Furuta
,
H.
, and
Kobayashi
,
T.
, 1995, “
Aesthetic Design System of Structures Using Neural Network and Image Database
,”
Proceedings of the 3rd International Symposium on Uncertainty Modelling and Analysis
.
33.
Baluja
,
S.
,
Pomerleau
,
D.
, and
Jochem
,
T.
, 1994, “
Towards Automated Artificial Evolution for Computer-Generated Images
,”
Connection Sci.
,
6
(
2&3
), pp.
325
354
.
34.
Griffith
,
N.
, and
Todd
,
P. M.
, eds., 1999,
Musical Networks: Parallel Distributed Perception and Performance
,
MIT Press/Bradford Books
,
Cambridge, MA
.
35.
Biles
,
J. A.
,
Anderson
,
P. G.
, and
Loggi
,
L. W.
, 1996,”
Neural Network Fitness Functions for a Musical IGA
,”
The International ICSC Symposium on Intelligent Industrial Automation and Soft Computing
.
36.
Bull
,
L.
, 1999, “
On Model-Based Evolutionary Computation
,”
Soft Comput.
,
3
, pp.
76
82
.
37.
Tsutsumi
,
K.
, and
Sasaki
,
K.
, 2008, “
Study on Shape Creation of Building’s Roof by Evaluating Aesthetic Sensibility
,”
J. Math. Comput. Simul.
,
77
(
5–6
), pp.
487
498
.
38.
Stiny
,
G.
, and
Gips
,
J.
, 1978,
Algorithmic Aesthetics
,
University of California Press
,
Berkley
.
39.
Tseng
,
I. H.
, 2011, “
The Unification of Stylistic Form and Function
,” Ph.D. thesis, Carnegie Mellon University, PA.
40.
Levenberg
,
K.
, 1944, “
A Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Q. Appl. Math.
,
2
, pp.
164
168
.
41.
Marquardt
,
D. W.
, 1963, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.
42.
Calkins
,
D. E.
, and
Chan
,
W. T.
, 1998, “
CDaero – A Parametric Aerodynamic Drag Prediction Tool
,”
International Congress and Exposition
, SAE Technical Paper 980398, Feb. Detroit, MI.
43.
Guan
,
L.
, 1995, “
Feature Based Aerodynamic Drag Coefficient Metamodel
,” M.S. thesis, University of Washington, Seattle, WA.
44.
Chan
,
W. T.
, 1997, “
Empirical Prediction of Automobile Drag Coefficient
,” M.S. thesis, University of Washington, Seattle, WA.
45.
Carr
,
G. W.
, and
Stapleford
,
W. R.
, 1981, “
A Proposed Empirical Method for Predicting the Aerodynamic Drag of Cars
,”
Motor Industry Research Association (MIRA)
, England.
46.
Tseng
,
I. H.
,
Cagan
,
J.
, and
Kotovsky
,
K.
, 2011, “
Form Function Fidelity
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Washington, DC.
47.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
, 1995, “
An Overview of Evolutionary Algorithms in Multiobjective Optimization
,”
Evol. Comput.
,
3
(
1
), pp.
1
16
.
48.
Zitzler
,
E.
, and
Thiele
,
L.
, 1999, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.
49.
Coello
,
C. A.
, 2000, “
An Updated Survey of GA-Based Multiobjective Optimization Techniques
,”
ACM Comput. Surv.
,
32
(
2
), pp.
109
143
.
50.
Zadeh
,
L.
, 1963, “
Optimality and Non-Scalar-Valued Performance Criteria
,”
IEEE Trans. Autom. Control
,
8
, pp.
59
60
.
51.
Goicoechea
,
A.
,
Hansen
,
D.
, and
Duckstein
,
L.
, 1982,
Multiobjective Decision Analysis With Engineering and Business Applications
,
John Wiley and Sons
,
NJ
.
52.
Marler
,
R. T.
, and
Arora
,
J. S.
, 2004, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
, pp.
369
395
.
53.
Marler
,
R. T.
, and
Arora
,
J. S.
, 2009, “
The Weighted Sum Method for Multi-Objective Optimization: New Insights
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
853
862
.
You do not currently have access to this content.