The paper proposes the study of the kinetostatic behavior of a flexible universal joint for minirobotic applications. A closed-form formulation of joint’s compliance is obtained for linear elastic material and small displacements. It is also presented a numerical study that considers the joint realized with a superelastic shape memory alloys (SMA) material (Ni–Ti alloy); in this case, a finite element (FE) approach is used to overcome the strong nonlinearities arising from both the superelastic constitutive law and the large displacements. Besides the compliance properties of the joint, also kinematic performances are investigated, since the instantaneous rotation axis is expected to be floating around its ideal position because of parasitic elastic deformations.

References

References
1.
Popa
,
D. O.
, and
Stephanou
,
H. E.
, 2004, “
Micro and Mesoscale Robotic Assembly
,”
J. Manuf. Process.
,
6
(
1
), pp.
52
71
.
2.
Cecil
,
J.
,
Powell
,
D.
, and
Vasquez
,
D.
, 2007, “
Assembly and Manipulation of Micro Devices—A State of the Art Survey
,”
Rob. Comput.-Integr. Manuf.
,
23
, pp.
580
588
.
3.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
J. Mech. Des.
,
127
, pp.
788
798
.
4.
Bruzzone
,
L.
, and
Molfino
,
R. M.
, 2006, “
A Novel Parallel Robot for Current Microassembly Applications
,”
Assem. Autom.
,
26
(
4
), pp.
299
306
.
5.
Dong
,
W.
,
Sun
,
L. N.
, and
Du
,
Z. J.
, 2007, “
Design of a Precision Compliant Parallel Positioner Driven by Dual Piezoelectric Actuators
,”
Sens. Actuators
,
135
, pp.
250
256
.
6.
Yong
,
Y. K.
,
Lu
,
T.-F.
, and
Handley
,
D. C.
, 2008, “
Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations
,”
Precis. Eng.
,
32
, pp.
63
70
.
7.
Gao
,
F.
,
Jianjun
,
Z.
,
Yulong
,
C.
, and
Zhenlin
,
J.
, 2003, “
Development of a New Type of 6-DOF Parallel Micro-Manipulator and Its Control System
,”
Proceedings of the IEEE International Conference on Robotics
,
Intelligent Systems and Signal Processing
,
Changsha, China
.
8.
Li
,
Y.
, and
Xu
,
Q.
, 2005, “
Novel Design of a 3-PUU Spatial Compliant Parallel Micromanipulator for Nanomanipulation
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation
,
Niagara Falls
,
Canada
.
9.
Palpacelli
,
M.-C.
,
Palmieri
,
G.
, and
Callegari
,
M.
, 2012, “
A Redundantly Actuated 2-DOF Mini Pointing Device
,”
J. Mech. Rob.
,
4
, p.
031012
.
10.
Paros
,
J.
, and
Weisbord
,
L.
, 1965, “
How to Design Flexure Hinge
,”
Mach. Des.
,
37
, pp.
151
156
.
11.
Smith
,
S. T.
, 2000,
Flexures: Elements of Elastic Mechanisms
,
Gordon & Breach
,
New York
.
12.
Lobontiu
,
N.
, 2003,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
13.
Lobontiu
,
N.
, and
Garcia
,
E.
, 2003, “
Two-Axis Flexure Hinges With Axially-Collocated and Symmetric Notches
,”
Comput. Struct.
,
81
, pp.
1329
1341
.
14.
Joung
,
W. C.
, and
Budynas
,
R. G.
, 2002,
Roark’s Formulas for Stress and Strain
,
7th ed.
,
McGraw Hill
,
New York
.
15.
Hesselbach
,
J.
, and
Raatz
,
A.
, 2000, “
Pseudo-Elastic Flexure-Hinges in Robots for Micro Assembly
,”
Proc. SPIE
,
4194
, pp.
157
167
.
16.
Hesselbach
,
J.
,
Raatz
,
A.
, and
Kunzmann
,
H.
, 2004, “
Performance of Pseudo-Elastic Flexure Hinges in Parallel Robots for Micro-Assembly Tasks
,”
CIRP Ann. – Manuf. Technol.
,
53
(
1
), pp.
329
332
.
17.
Auricchio
,
F.
, 1995, “
Shape Memory Alloys: Applications, Micromechanics, Macromodelling, and Numerical Simulations
,” Ph.D. Dissertation, University of California at Berkeley.
18.
Auricchio
,
F.
, 2001, “
A Robust Integration-Algorithm for a Finite-Strain Shape-Memory-Alloy Superelastic Model
,”
Int. J. Plast.
,
17
(
7
), pp.
971
990
.
19.
De la Flor
,
S.
,
Urbina
,
C.
, and
Ferrando
,
F.
, 2006, “
Constitutive Model of Shape Memory Alloys: Theoretical Formulation and Experimental Validation
,”
Mater. Sci. Eng. A
,
427
, pp.
112
122
.
20.
Brinson
,
L. C.
, and
Huang
,
M. S.
, 1996, “
Simplifications and Comparisons of Shape Memory Alloy Constitutive Models
,”
J. Intell. Mater. Syst. Struct.
,
7
, pp.
108
114
.
21.
ANSYS, Inc., 2004, “Theory Reference,” Release 9.0.
22.
Stoeckel
D.
, 1990, “
Shape-Memory Alloys Prompt New Actuator Designs
,”
Adv. Mater. Process.
,
138
, pp.
33
38
.
23.
Mellor
B. G.
, 1987,
The Science and Technology of Shape Memory Alloys
,
V.
Torra
, ed.,
Impresrapit
,
Barcelona
, p.
334
.
24.
Besselink
P. A.
, 1987,
The Science and Technology of Shape Memory Alloys
,
V.
Torra
, ed.,
Impresrapit
,
Barcelona
, p.
407
.
You do not currently have access to this content.