Uncertainty plays a critical role in engineering design as even a small amount of uncertainty could make an optimal design solution infeasible. The goal of robust optimization is to find a solution that is both optimal and insensitive to uncertainty that may exist in parameters and design variables. In this paper, a novel approach, sequential quadratic programming for robust optimization (SQP-RO), is proposed to solve single-objective continuous nonlinear optimization problems with interval uncertainty in parameters and design variables. This new SQP-RO is developed based on a classic SQP procedure with additional calculations for constraints on objective robustness, feasibility robustness, or both. The obtained solution is locally optimal and robust. Eight numerical and engineering examples with different levels of complexity are utilized to demonstrate the applicability and efficiency of the proposed SQP-RO with the comparison to its deterministic SQP counterpart and RO approaches using genetic algorithms. The objective and/or feasibility robustness are verified via Monte Carlo simulations.

References

References
1.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
, 2006, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
2.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
, 2007, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
3.
Hajimiragha
,
A.
,
Cañizares
,
C. A.
,
Fowler
,
M. W.
,
Moazeni
,
S.
, and
Elkamel
,
A.
, 2011, “
A Robust Optimization Approach for Planning the Transition to Plug-in Hybrid Electric Vehicles
,”
IEEE Trans. Power Syst.
,
26
(
4
), pp.
2264
2274
.
4.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 2002, “
Robust Optimization-Methodology and Applications
,”
Math. Program. Ser. B
,
92
, pp.
453
480
.
5.
Mulvey
,
J. M.
, and
Vanderbei
,
R. J.
, 1995, “
Robust Optimization of Large-Scale Systems
,”
Oper. Res.
,
43
(
2
), pp.
264
281
.
6.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
.
7.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
, 2006, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
8.
Saha
,
A.
, and
Ray
,
T.
, 2011, “
Practical Robust Design Optimization Using Evolutionary Algorithms
,”
ASME J. Mech. Des.
,
133
(
10
), pp.
225
233
.
9.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
10.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
, 2007, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
11.
Tang
,
Y. F.
,
Chen
,
J. Q.
, and
Wei
J. H.
, 2012, “
A Sequential Algorithm for Reliability-Based Robust Design Optimization Under Epistemic Uncertainty
,”
ASME J. Mech. Des.
,
134
(
1
), pp.
1
10
.
12.
Taguchi
,
G.
, 1978, “
Performance Analysis Design
,”
Int. J. Prod. Res.
,
16
, pp.
521
530
.
13.
Lombardi
,
M.
, and
Haftka
,
R. T.
, 1998, “
Anti-Optimization Technique for Structural Design Under Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
19
31
.
14.
Gunawan
,
S.
, and
Azarm
,
S.
, 2004, “
Non-Gradient Based Parameter Sensitivity Estimation for Single Objective Robust Design Optimization
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
395
402
.
15.
Lee
,
K. H.
, and
Park
,
G. J.
, 2006, “
A Global Robust Optimization Using Kriging Based Approximation Model
,”
JSME Int. J., Ser. C
,
49
(
3
), pp.
779
788
.
16.
Li
,
M.
, and
Azarm
,
S.
, 2008, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081402
.
17.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A.
, 2011, “
Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061002
.
18.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 1999, “
Robust Solutions of Uncertain Linear Programs
,”
Oper. Res. Lett.
,
25
, pp.
1
13
.
19.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 2000, “
Robust Solutions of Linear Programming Problems Contaminated With Uncertain Data
,”
Math. Program. Ser. A
,
88
, pp.
411
424
.
20.
Bertsimas
,
D.
,
Brown
,
D.
, and
Caramanis
,
C.
, 2008, “
Theory and Applications of Robust Optimization
,”
Math. Program. Ser. B
,
107
, pp.
5
36
.
21.
Li
,
M.
,
Gabriel
,
S.
,
Shim
,
Y.
, and
Azarm
,
S.
, 2011, “
Interval Uncertainty-Based Robust Optimization for Convex and Non-Convex Quadratic Programs With Applications in Network Infrastructure Planning
,”
Netw. Spatial Econ.
,
11
, pp.
159
191
.
22.
Soyster
,
A. L.
, 1973, “
Convex Programming With Set-Inclusive Constraints and Applications to Inexact Linear Programming
,”
Oper. Res.
,
21
, pp.
1154
1157
.
23.
Bertsimas
,
D.
, and
Sim
,
M.
, 2004, “
The Price of Robustness
,”
Oper. Res.
,
52
(
1
), pp.
35
33
.
24.
Bertsimas
,
D.
, and
Sim.
M.
, 2006, “
Tractable Approximations to Robust Conic Optimization Problems
,”
Math. Program.
,
107
(
1
), pp.
5
36
.
25.
Teo
,
K. M.
, 2007, “
Nonconvex Robust Optimization
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
,
MA
.
26.
Ho
,
S. L.
, and
Yang
,
S. Y.
, 2012, “
A Fast Robust Optimization Methodology Based on Polynomial Chaos and Evolutionary Algorithm for Inverse Problems
,”
IEEE Trans. Magn.
,
48
(
2
), pp.
259
262
.
27.
Li
,
M.
, 2007, “
Robust Optimization and Sensitivity Analysis With Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications
,”
PhD dissertation
,
Department of Mechanical Engineering
,
UMD, USA
.
28.
Arora
,
J. S.
, 2004,
Introduction to Optimum Design
,
2nd ed.
,
Elsevier
,
New York
.
29.
Gunawan
,
S.
, 2004, “
Parameter Sensitivity Measures for Single Objective, Multi-Objective, and Feasibility Robust Design Optimization
,”
Ph.D. dissertation
,
Department of Mechanical Engineering
,
UMD, USA
.
30.
Siddiqui
,
S.
,
Azarm
,
S.
, and
Gabriel
,
S.
, 2011, “
A Modified Benders Decomposition Method for Efficient Robust Optimization Under Interval Uncertainty
,”
Struct. Multidiscip. Optim.
,
44
, pp.
259
275
.
You do not currently have access to this content.