This paper proposes a novel second-order reliability method (SORM) using noncentral or general chi-squared distribution to improve the accuracy of reliability analysis in existing SORM. Conventional SORM contains three types of errors: (1) error due to approximating a general nonlinear limit state function by a quadratic function at most probable point in standard normal U-space, (2) error due to approximating the quadratic function in U-space by a parabolic surface, and (3) error due to calculation of the probability of failure after making the previous two approximations. The proposed method contains the first type of error only, which is essential to SORM and thus cannot be improved. However, the proposed method avoids the other two types of errors by describing the quadratic failure surface with the linear combination of noncentral chi-square variables and using the linear combination for the probability of failure estimation. Two approaches for the proposed SORM are suggested in the paper. The first approach directly calculates the probability of failure using numerical integration of the joint probability density function over the linear failure surface, and the second approach uses the cumulative distribution function of the linear failure surface for the calculation of the probability of failure. The proposed method is compared with first-order reliability method, conventional SORM, and Monte Carlo simulation results in terms of accuracy. Since it contains fewer approximations, the proposed method shows more accurate reliability analysis results than existing SORM without sacrificing efficiency.

References

References
1.
Yi
,
K.
,
Choi
,
K. K.
,
Kim
,
N. H.
, and
Botkin
,
M. E.
, 2007, “
Design Sensitivity Analysis and Optimization for Minimizing Springback of Sheet-Formed Part
,”
Int. J. Numer. Methods Eng.
,
71
, pp.
1483
1511
.
2.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Yi
,
K.
, 2005, “
Performance Moment Integration (PMI) Method for Quality Assessment in Reliability-Based Robust Optimization
,”
Mech. Based Des. Struct. Mach.
,
33
(
2
), pp.
185
213
.
3.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R.-J.
, and
Gu
,
L.
, 2004, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
272
283
.
4.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Tang
,
J.
, 2005, “
Structural Durability Design Optimization and Its Reliability Assessment
,”
Int. J. Prod. Dev.
,
1
(
3/4
), pp.
383
401
.
5.
Dong
,
J.
,
Choi
,
K. K.
,
Wang
,
A.
,
Zhang
,
W.
, and
Vlahopoulos
,
N.
, 2005, “
Parametric Design Sensitivity Analysis of High Frequency Structural-Acoustic Problems Using Energy Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
62
, pp.
83
121
.
6.
Dong
,
J.
,
Choi
,
K. K.
,
Vlahopoulos
,
N.
,
Wang
,
A.
, and
Zhang
,
W.
, 2007, “
Design Sensitivity Analysis and Optimization of High Frequency Radiation Problems Using Energy Finite Element and Energy Boundary Element Methods
,”
AIAA J.
,
45
(
6
), pp.
1187
1198
.
7.
Kim
,
N. H.
,
Wang
,
H.
, and
Queipo
,
N. V.
, 2006, “
Adaptive Reduction of Design Variables Using Global Sensitivity in Reliability-Based Optimization
,”
Int. J. Reliab. Saf.
,
1
(
1–2
), pp.
102
119
.
8.
Acar
,
E.
, and
Haftka
,
R. T.
, 2007, “
Reliability-Based Aircraft Structural Design Pays, Even With Limited Statistical Data
,”
J. Aircr.
,
44
(
3
), pp.
812
823
.
9.
Lee
,
S. H.
,
Chen
,
W.
, and
Kwak
,
B. M.
, 2009, “
Robust Design With Arbitrary Distribution Using Gauss-Type Quadrature Formula
,”
Struct. Multidiscip. Optim.
,
39
(
3
), pp.
227
243
.
10.
Yu
,
X.
, and
Du
,
X.
, 2006, “
Reliability-Based Multidisciplinary Optimization for Aircraft Wing Design
,”
Struct. Infrastruct. Eng.
,
2
(
3/4
), pp.
277
289
.
11.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
John Wiley & Sons
,
New York
.
12.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
An Exact and Invariant First Order Reliability Format
,”
ASCE J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.
13.
Tu
,
J.
, and
Choi
,
K. K.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
14.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2001, “
Design Potential Method for Reliability-Based System Parameter Design Using Adaptive Probabilistic Constraint Evaluation
,”
AIAA J.
,
39
(
4
), pp.
667
677
.
15.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinormal Integrals
,”
ASCE J. Eng. Mech.
,
110
(
3
), pp.
357
366
.
16.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1988, “
Improvement of Second-Order Reliability Estimates by Importance Sampling
,”
ASCE J. Eng. Mech.
,
114
(
12
), pp.
2195
2199
.
17.
Adhikari
,
S.
, 2004, “
Reliability Analysis Using Parabolic Failure Surface Approximation
,”
ASCE J. Eng. Mech.
,
130
(
12
), pp.
1407
1427
.
18.
Zhang
,
J.
, and
Du
,
X.
, 2010, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.
19.
Rahman
,
S.
, and
Wei
,
D.
, 2006, “
A Univariate Approximation at Most Probable Point for Higer-Order Reliability Analysis
,”
Int. J. Solids Struct.
,
43
, pp.
2820
2839
.
20.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
, 2008, “
Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
14
27
.
21.
Xiong
,
F.
,
Greene
,
S.
,
Chen
,
W.
,
Xiong
,
Y.
, and
Yang
,
S.
, 2010, “
A New Sparse Grid Based Method for Uncertainty Propagation
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
335
349
.
22.
Rosenblueth
,
E.
, “
Point Estimates for Probability Moments
,”
Appl. Math. Model.
,
5
, pp.
329
335
.
23.
Du
,
X.
, and
Huang
,
B.
, 2006, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
,
128
, pp.
26
33
.
24.
Youn
,
B. D.
,
Xi
,
Z.
,
Wells
,
L. J.
, and
Lamb
,
D. A.
, 2006, “
Stochastic Response Surface Using the Enhanced Dimension Reduction (eDR) Method For Reliability-Based Robust Design Optimization
,”
III European conference on Computational Mechanics
,
Lisbon, Portugal
, 2006.
25.
Rubinstein
,
R. Y.
, and
Kroese
D. P.
, 2008,
Simulation and Monte Carlo Method
,
John Wiley & Sons
,
New Jersey
.
26.
Denny
,
M.
, 2001, “
Introduction to Importance Sampling in Rare-Event Simulations
,”
Eur. J. Phys.
,
22
, pp.
403
411
.
27.
Bucklew
,
J. A.
, 2010,
Introduction to Rare Event Simulation
,
Springer
,
New York
.
28.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
29.
Huntington
,
D. E.
, and
Lyrintzis
,
C. S.
, 1998, “
Improvements to and Limitations of Latin Hypercube Sampling
,”
Probab. Eng. Mech.
,
13
(
4
), pp.
245
253
.
30.
Helton
,
J. C.
, and
Davis
,
F. J.
, 2003, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
31.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Sallaberry
,
C. J.
, and
Storlie
,
C. B.
, 2006, “
Survey of Sampling-based Methods for Uncertainty and Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
91
, pp.
1175
1209
.
32.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
, 2003, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
, pp.
47
68
.
33.
Zhao
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
, 2011, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp.
2034
2046
.
34.
Lee
,
I.
,
Choi
,
K. K.
, and
Zhao
,
L.
, “
Sampling-Based RBDO Using the Dynamic Kriging (D-Kriging) Method and Stochastic Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
44
(
3
), pp.
299
317
.
35.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
, 2001, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.
36.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
, 2005, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
37.
Buranathiti
,
T.
,
Cao
,
J.
,
Chen
,
W.
,
Baghdasaryan
,
L.
, and
Xia
,
Z. C.
, 2004, “
Approaches for Model Validation: Methodology and Illustration on a Sheet Metal Flanging Process
,”
ASME J. Manuf. Sci. Eng.
,
126
, pp.
2009
2013
.
38.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
, 1986,
Methods of Structural Safety
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
39.
Rosenblatt
,
M.
, 1952, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
, pp.
470
472
.
40.
Johnson
,
N. L.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
, 1994,
Continuous Univariate Distributions
, Vol.
1
,
John Wiley & Sons
,
New Jersey
.
41.
Johnson
,
N. L.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
, 1994,
Continuous Univariate Distributions
, Vol.
2
,
John Wiley & Sons
,
New Jersey
.
42.
Ruben
,
H.
, 1962, “
Probability Content of Regions Under Spherical Normal Distributions, IV: The Distribution of Homogeneous and Non-Homogeneous Quadratic Functions of Normal Variables
,”
Ann. Math. Stat.
,
33
(
2
), pp.
542
570
.
43.
Siddiqui
,
M. M.
, and
Alkarni
,
S. H.
, 2001, “
An Upper Bound for the Distribution Function of a Positive Definite Quadratic Form
,”
J. Stat. Comput. Simul.
,
69
(
1
), pp.
41
56
.
44.
Farebrother
,
R. W.
, 1984, “
The Distribution of a Positive Linear Combination of χ2 Random Variables
,”
J. R. Stat. Soc.
,
33
(
3
), pp.
332
339
. Available at: http://www.jstor.org/stable/10.2307/2347721http://www.jstor.org/stable/10.2307/2347721
45.
Davies
,
R. B.
, 1980, “
The Distribution of a Linear Combination of χ2 Random Variables
,”
J. R. Stat. Soc.
,
29
(
3
), pp.
323
333
.
46.
Imhof
,
J. P.
, 1961, “
Computing the Distribution of Quadratic Forms in Normal Variables
,”
Biometrika
,
48
(
3/4
), pp.
419
426
.
47.
Harville
,
D. A.
, 1971, “
On the Distribution of Linear Combinations of Non-Central Chi-Squares
,”
Ann. Math. Stat.
,
42
(
2
), pp.
809
811
.
48.
Shah
,
B. K.
, 1963, “
Distribution of Definite and of Indefinite Quadratic Forms From a Non-Central Normal Distribution
,”
Ann. Math. Stat.
,
34
(
1
), pp.
186
190
.
49.
Provost
,
S. B.
, and
Rudiuk
,
E. M.
, 1996, “
The Exact Distribution of Indefinite Quadratic Forms in Noncentral Normal Vectors
,”
Ann. Inst. Statist. Math.
,
48
(
2
), pp.
381
394
.
50.
Press
,
S. J.
, 1966, “
Linear Combinations of Non-Central Chi-Square Variates
,”
Ann. Math. Stat.
,
37
(
2
), pp.
480
487
.
51.
Hong
,
H. P.
, 1999, “
Simple Approximations for Improving Second-order Reliability Estimates
,”
J. Eng. Mech.
,
125
(
2
), pp.
592
595
.
52.
Polidori
,
D. C.
,
Beck
,
J. L.
, and
Papadimitriou
,
C.
, 1999, “
New Approximations for Reliability Integrals
,”
J. Eng. Mech.
,
125
(
4
), pp.
466
475
.
53.
Whittaker
,
E. T.
, 1904, “
An Expression of Certain Known Functions as Generalized Hypergeometric Functions
,”
Bull. Am. Math. Soc.
,
10
, pp.
125
134
.
54.
Guo
,
J.
, and
Du
,
X.
, 2009, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng.
,
78
(
13
), pp.
1585
1617
.
You do not currently have access to this content.