Engineering change (EC) is a source of uncertainty. While the number of changes to a design can be optimized, their existence cannot be eliminated. Each change is accompanied by intended and unintended impacts both of which might propagate and cause further knock-on changes. Such change propagation causes uncertainty in design time, cost, and quality and thus needs to be predicted and controlled. Current engineering change propagation models map the product connectivity into a single-domain network and model change propagation as spread within this network. Those models miss out most dependencies from other domains and suffer from “hidden dependencies”. This paper proposes the function-behavior-structure (FBS) linkage model, a multidomain model which combines concepts of both the function-behavior-structure model from Gero and colleagues with the change prediction method (CPM) from Clarkson and colleagues. The FBS linkage model is represented in a network and a corresponding multidomain matrix of structural, behavioral, and functional elements and their links. Change propagation is described as spread in that network using principles of graph theory. The model is applied to a diesel engine. The results show that the FBS linkage model is promising and improves current methods in several ways: The model (1) accounts explicitly for all possible dependencies between product elements, (2) allows capturing and modeling of all relevant change requests, (3) improves the understanding of why and how changes propagate, (4) is scalable to different levels of decomposition, and (5) is flexible to present the results on different levels of abstraction. All these features of the FBS linkage model can help control and counteract change propagation and reduce uncertainty and risk in design.

References

1.
Eckert
,
C. M.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
, 2004, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
, pp.
1
21
.
2.
Fricke
,
E.
,
Gebhard
,
B.
,
Negele
,
H.
, and
Igenbergs
,
E.
, 2000, “
Coping With Changes: Causes, Findings, and Strategies
,”
Syst. Eng.
,
3
, pp.
169
179
.
3.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C. M.
, 2004, “
Predicting Change Propagation in Complex Design
,”
J. Mech. Des.
,
126
, pp.
788
797
.
4.
Rosenman
,
M. A.
, and
Gero
,
J. S.
, 1998, “
Purpose and Function in Design: From the Socio-Cultural to the Techno-Physical
,”
Des. Stud.
,
19
, pp.
161
186
.
5.
Eppinger
,
S. D.
, and
Browning
,
T. R.
, 2012,
Design Structure Matrix Methods and Applications
,
The MIT Press
,
Cambridge, MA
.
6.
Agnarsson
,
G.
, and
Greenlaw
,
R.
, 2007,
Graph Theory: Modeling, applications, and algorithms
,
Pearson/Prentice–Hall
,
Upper Saddle River, NJ
.
7.
DiPrima
,
M. R.
, 1982, “
Engineering Change Control and Implementation Considerations
,”
Prod. Invent. Manage. J.
,
23
, pp.
81
87
.
8.
Dale
,
B. G.
, 1982, “
The Management of Engineering Change Procedure
,”
Eng. Manage. Int.
,
1
, pp.
201
208
.
9.
Wright
,
I. C.
, 1997, “
A Review of Research Into Engineering Change Management: Implications for Product Design
,”
Des. Stud.
,
18
, pp.
33
39
.
10.
Jarratt
,
T. A. W.
,
Eckert
,
C. M.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
, 2011, “
Engineering Change: An Overview and Perspective on the Literature
,”
Res. Eng. Des.
,
22
, pp.
103
124
.
11.
Huang
,
G. Q.
,
Low
,
V.
,
Yee
,
W. Y.
, and
Mak
,
K. L.
, 2000, “
A Methodology for Engineering Change Impact Analysis
,” 16th International Conference on Computer-aided Production Engineering, Edinburgh, UK, pp.
603
612
.
12.
Jarratt
,
T. A. W.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
, 2004c, “
Engineering Change
,”
Design Process Improvement
,
P. J.
Clarkson
and
C. M.
Eckert
, eds.,
Springer
,
New York, NY
.
13.
Rivière
,
A.
,
DaCunha
,
C.
, and
Tollenaere
,
M.
, 2002, “
Performance in Engineering Change Management
,”
Recent Advances in Integrated Design and Manufacturing in Mechanical Engineering
,
G.
Gogu
,
D.
Doutellier
,
P.
Chedmail
, and
P.
Ray
, eds., 1st ed.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, p.
369
.
14.
Lee
,
H. J.
,
Ahn
,
H. J.
,
Kim
,
J. W.
, and
Park
,
S. J.
, 2006, “
Capturing and Reusing Knowledge in Engineering Change Management: A Case of Automobile Development
,”
Inf. Syst. Front.
,
8
, pp.
375
394
.
15.
Maull
,
R.
, Hughes, D., and Bennett, J., 1992, “
Role of the Bill-of-Materials as a CAD/CAPM Interface and the Key Importance of Engineering Change Control
,”
Comput. Control Eng. J.
,
3
, pp.
63
70
.
16.
Cohen
,
T.
, Navathe, S. B., and Fulton, R. E., 2000, “
C-FAR, Change Favorable Representation
,”
Comput. Aided Des.
,
32
, pp.
321
338
.
17.
Rouibah
,
K.
, and
Caskey
,
K. R.
, 2003, “
Change Management in Concurrent Engineering From a Parameter Perspective
,”
Comput. Ind.
,
50
, pp.
15
34
.
18.
Ollinger
,
G. A.
, and
Stahovich
,
T. F.
, 2004, “
RedesignIT—A Model-Based Tool for Managing Design Changes
,”
J. Mech. Des.
,
126
, pp.
208
216
.
19.
Rutka
,
A.
, Guenov, M., Lemmens, Y., Schmidt-Schäffer, T., Coleman, P., and Riviere, A., 2006, “
Methods for Engineering Change Propagation Analysis
,” 25th Congress of the International Council of the Aeronautical Sciences (ICAS), Stockholm, Sweden.
20.
Aurich
,
J. C.
, and
Roessing
,
M.
, 2007, “
Engineering Change Impact Analysis in Production Using VR
,”
Digital Enterprise Technology: Perspectives and Future Challenges
,
Cunha
,
P. F.
, and
Maropoulos
,
P. G.
, eds.,
Springer
,
New York, NY
, pp.
75
82
.
21.
Reddi
,
K. R.
, and
Moon
,
Y. B.
, 2009, “
A Framework for Managing Engineering Change Propagation
,”
Int. J. Innov. Learn.
,
6
, pp.
461
476
.
22.
Kocar
,
V.
, and
Akgunduz
,
A.
, 2010, “
ADVICE: A Virtual Environment for Engineering Change Management
,”
Comput. Ind.
,
61
, pp.
15
28
.
23.
Cheng
,
H.
, and
Chu
,
X.
, 2011, “
A Network-Based Assessment Approach for Change Impacts on Complex Product
,”
J. Intell. Manuf.
,
23
, pp.
1419
1431
.
24.
Smith
,
R. P.
, and
Eppinger
,
S. D.
, 1997a, “
Identifying Controlling Features of Engineering Design Iteration
,”
Manage. Sci.
,
43
, pp.
276
293
.
25.
Smith
,
R. P.
, and
Eppinger
,
S. D.
, 1997b, “
A Predictive Model of Sequential Iteration in Engineering Design
,”
Manage. Sci.
,
43
, pp.
1104
1120
.
26.
Yassine
,
A.
,
Joglekar
,
N.
,
Braha
,
D.
,
Eppinger
,
S.
, and
Whitney
,
D.
, 2003, “
Information Hiding in Product Development: The Design Churn Effect
,”
Res. Eng. Des.
,
14
, pp.
145
161
.
27.
Braha
,
D.
, and
Bar-Yam
,
Y.
, 2004, “
Information Flow Structure in Large-Scale Product Development Organizational Networks
,”
J. Inf. Technol.
,
19
, pp.
244
253
.
28.
Braha
,
D.
, and
Bar-Yam
,
Y.
, 2004, “
Topology of Large-Scale Engineering Problem-Solving Networks
,”
Phys. Rev. E - Stat., Nonlinear, Soft Matter Phys.
,
69
, pp.
161131
161137
.
29.
Braha
,
D.
, and
Bar-Yam
,
Y.
, 2007, “
The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results
,”
Management Science
,
53
, pp.
1127
1145
.
30.
Keller
,
R.
, 2007, “
Predicting Change Propagation: Algorithms, Representations, Software Tools
,” Ph.D. thesis, Department of Engineering, University of Cambridge, Cambridge, UK.
31.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C. M.
, 2001a, “
Predicting Change Propagation in Complex Design
,” ASME Design Engineering Technical Conference (DETC’01), Pittsburgh, PA, pp.
155
164
.
32.
Jarratt
,
T. A. W.
,
Eckert
,
C. M.
,
Clarkson
,
P. J.
, 2002, “
Product Architecture and the Propagation of Engineering Change
,” International Design Conference (DESIGN’02), Dubrovnik, Croatia.
33.
Jarratt
,
T. A. W.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
, 2004a, “
Development of a Product Model to Support Engineering Change Management
,” Fifth International Symposium on Tools and Methods of Competitive Engineering (TMCE’04), Lausanne, Switzerland, pp.
331
342
.
34.
Ariyo
,
O. O.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
, 2008, “
Hierarchical Decompositions for Complex Product Representation
,” International Design Conference (DESIGN’08), Dubrovnik, Croatia.
35.
Chittaro
,
L.
, and
Kumar
,
A. N.
, 1998, “
Reasoning About Function and Its Applications to Engineering
,”
Artif. Intell. Eng.
,
12
, pp.
331
336
.
36.
Gero
,
J. S.
, 1990, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
11
, pp.
26
36
.
37.
Umeda
,
Y.
,
Takeda
,
H.
,
Tomiyama
,
T.
, and
Yoshikawa
,
H.
, 1990, “
Function, Behaviour, and Structure
,”
Applications of artificial intelligence in engineering
,
J. S.
Gero
, ed.,
Springer
,
Berlin, Germany
, pp.
177
193
.
38.
Gero
,
J. S.
, and
Kannengiesser
,
U.
, 2004, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
, pp.
373
391
.
39.
Keuneke
,
A. M.
, 1991, “
Device Representation-the Significance of Functional Knowledge
,”
IEEE Expert
,
6
, pp.
22
25
.
40.
Ullman
,
D. G.
, 1993, “
The Evolution of Function and Behaviour During Mechanical Design
,”
Des. Theory Methodol.
,
53
, pp.
91
103
.
41.
Umeda
,
Y.
,
Ishii
,
M.
,
Yoshioka
,
M.
,
Shimomura
,
Y.
, and
Tomiyama
,
T.
, 1996, “
Supporting Conceptual Design Based on the Function-Behavior-State Modeler
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
, pp.
275
288
.
42.
Crilly
,
N.
, 2010, “
The Roles That Artefacts Play: Technical, Social and Aesthetic Functions
,”
Des. Stud.
,
31
, pp.
311
344
.
43.
Far
,
B. H.
, and
Elamy
,
A. H.
, 2005, “
Functional Reasoning Theories: Problems and Perspectives
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
19
, pp.
75
88
.
44.
Chakrabarti
,
A.
, 1998, “
Supporting Two Views of Function in Mechanical Design
,” National Conference on Artificial Intelligence (AAAI’98), Madison, WI.
45.
Sembugamoorthy
,
V.
, and
Chandrasekaran
,
B.
, 1986, “
Functional Representation of Devices and Compilation of Diagnostic Problem Solving Systems
,”
Experience, memory, and reasoning
,
J. L.
Kolodner
and
C. K.
Riesbeck
, eds.,
Lawrence Erlbaum Associates
,
Hillsdale, NJ
, pp.
47
73
.
46.
Umeda
,
Y.
, and
Tomiyama
,
T.
, 1997, “
Functional Reasoning in Design
,”
IEEE Expert
,
12
, pp.
42
48
.
47.
Chandrasekaran
,
B.
, 2005, “
Representing Function: Relating Functional Representation and Functional Modeling Research Streams
,”
Artificial Intelligence for Engineering Design, Analysis and Manufacturing
,
19
, pp.
65
74
.
48.
Chakrabarti
,
A.
, and
Blessing
,
L. T. M.
, 1996, “
Special Issue: Representing Functionality in Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
, pp.
251
253
.
49.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
, 1996, “
An Approach to Functional Synthesis of Mechanical Design Concepts: Theory, Applications, and Emerging Research Issues
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
, pp.
313
331
.
50.
Erden
,
M. S.
, Komoto, H., van Beek, T. J., D’Amelio, Echavarria, V. E., and Tomiyama, T., 2008, “
A Review of Function Modeling: Approaches and Applications
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
, pp.
147
169
.
51.
Iwasaki
,
Y.
, Fikes, R., Vescovi, M., and Chandrasekaran, B., 1993, “
How Things are Intended to Work: Capturing Functional Knowledge in Device Design
,” International Joint Conference on Artificial Intelligence (IJCAI’93), Chambery, France, pp.
1516
1522
.
52.
Goel
,
A. K.
, Rugaber, S., and Vattam, S., 2009, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
, pp.
23
35
.
53.
Goel
,
A. K.
, Bhatta, S. R., and Stroulia, E. 1997, “
Kritik: An Early Case-Based Design System
,”
Issues and applications of case-based reasoning in design
,
M.
Maher
and
P.
Pu
, eds.,
Erlbaum
,
Mahwah, NJ
, pp.
87
132
.
54.
Goel
,
A. K.
, and
Stroulia
,
E.
, 1996, “
Functional Device Models and Model-Based Diagnosis in Adaptive Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
10
, pp.
355
370
.
55.
Qian
,
L.
, and
Gero
,
J. S.
, 1996, “
Function-Behavior-Structure Paths and Their Role in Analogy-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
, pp.
289
312
.
56.
Stone
,
R. B.
, and
Wood
,
K. L.
, 2000, “
Development of a Functional Basis for Design
,”
J. Mech. Des.
,
122
, pp.
359
370
.
57.
van Beek
,
T. J.
,
Erden
,
M. S.
, and
Tomiyama
,
T.
, 2010, “
Modular Design of Mechatronic Systems With Function Modeling
,”
Mechatronics
,
20
, pp.
850
863
.
58.
McMahon
,
C. A.
, 1994, “
Observations on Modes of Incremental Change in Design
,”
J. Eng. Des.
5
, pp.
195
209
.
59.
Hubka
,
V.
, and
Eder
,
W. E.
, 1996,
Design Science: Introduction to the Needs, Scope and Organization of Engineering Design Knowledge
,
Springer
,
London, UK
.
60.
Wynn
,
D. C.
, Wyatt, D. F., Nair, S. M. T., and Clarkson, P. J., 2010, “
An Introduction to the CAMBRIDGE ADVANCED MODELLER
,” 1st International Conference on Modelling and Management of Engineering Processes (MMEP’10), Cambridge, UK.
61.
Keller
,
R.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
, 2009, “
Using an Engineering Change Methodology to Support Conceptual Design
,”
J. Eng. Des.
20
, pp.
571
587
.
62.
Keller
,
R.
,
Eckert
,
C. M.
, and
Clarkson
,
P. J.
, 2005a, “
Multiple Views to Support Engineering Change Management for Complex Products
,” 3rd International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV’05), London, UK, pp.
33
41
.
You do not currently have access to this content.