In new product design, risk averse firms must consider downside risk in addition to expected profitability, since some designs are associated with greater market uncertainty than others. We propose an approach to robust optimal product design for profit maximization by introducing an α-profit metric to manage expected profitability vs. downside risk due to uncertainty in market share predictions. Our goal is to maximize profit at a firm-specified level of risk tolerance. Specifically, we find the design that maximizes the α-profit: the value that the firm has a (1 − α) chance of exceeding, given the distribution of possible outcomes. The parameter α ∈ (0,1) is set by the firm to reflect sensitivity to downside risk (or upside gain), and parametric study of α reveals the sensitivity of optimal design choices to firm risk preference. We account here only for uncertainty of choice model parameter estimates due to finite data sampling when the choice model is assumed to be correctly specified (no misspecification error). We apply the delta method to estimate the mapping from uncertainty in discrete choice model parameters to uncertainty of profit outcomes and identify the estimated α-profit as a closed-form function of decision variables for the multinomial logit model. An example demonstrates implementation of the method to find the optimal design characteristics of a dial-readout scale using conjoint data.

References

References
1.
Green
,
P. E.
,
Carroll
,
J. D.
, and
Goldberg
,
S. M.
, 1981, “
A General Approach to Product Design Optimization via Conjoint Analysis
,”
J. Marketing
,
45
(
3
), pp.
17
37
.
2.
Gavish
,
B.
,
Horsky
,
D.
, and
Srikanth
,
K.
, 1983, “
An Approach to the Optimal Positioning of a New Product
,”
Manage. Sci.
,
29
(
11
), pp.
1277
1297
.
3.
Green
,
P. E.
, and
Krieger
,
A. M.
, 1985, “
Models and Heuristics for Product Line Selection
,”
Mark. Sci.
,
4
(
1
), pp.
1
19
.
4.
Dobson
,
G.
, and
Kalish
,
S.
, 1988, “
Positioning and Pricing a Product Line
,”
Mark. Sci.
,
7
(
2
), pp.
107
125
.
5.
Gonul
,
F.
, and
Srinivasan
,
K.
, 1993, “
Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues
,”
Mark. Sci.
,
12
(
3
), pp.
213
229
.
6.
D’Souza
,
B.
, and
Simpson
,
T. W.
, 2003, “
A Genetic Algorithm Based Method for Product Family Design Optimization
,”
Eng. Optim.
,
35
(
1
), pp.
1
18
.
7.
Heese
,
H. S.
, and
Swaminathan
,
J. M.
, 2006, “
Product Line Design With Component Commonality and Cost-Reduction Effort
,”
Manuf. Service Oper. Manage.
,
8
(
2
), pp.
206
219
.
8.
Choi
,
S. C.
,
Desarbo
,
W. S.
, and
Harker
,
P. T.
, 1991, “
Product Positioning Under Price Competition
,”
Manage. Sci.
,
36
(
2
), pp.
175
199
.
9.
Shiau
,
C.-S.
, and
Michalek
,
J. J.
, 2009, “
Should Designers Worry About Market Systems?
,”
ASME J. Mech. Des.
,
131
(
1
), pp.
1
9
.
10.
Shiau
,
C.-S.
, and
Michalek
,
J. J.
, 2009, “
Optimal Product Design Under Price Competition
,”
ASME J. Mech. Des.
,
131
(
7
), pp.
1
10
.
11.
Dobson
,
G.
, and
Kalish
,
S.
, 1993, “
Heuristics for Pricing and Positioning a Product-Line Using Conjoint and Cost Data
,”
Manage. Sci.
,
39
(
2
), pp.
160
175
.
12.
Tyagi
,
R. K.
, 2000, “
Sequential Product Positioning Under Differential Costs
,”
Manage. Sci.
,
46
(
7
), pp.
928
940
.
13.
Villas-Boas
,
J. M.
, 1998, “
Product Line Design for a Distribution Channel
,”
Mark. Sci.
,
17
(
2
), pp.
156
169
.
14.
Luo
,
L.
,
Kannan
,
P. K.
, and
Ratchford
,
B. T.
, 2007, “
New Product Development Under Channel Acceptance
,”
Mark. Sci.
,
26
(
2
), pp.
149
163
.
15.
Williams
,
N.
,
Azarm
,
S.
, and
Kannan
,
P. K.
, 2008, “
Engineering Product Design Optimization for Retail Channel Acceptance
,”
ASME J. Mech. Des.
,
130
(
6
), pp.
1
10
.
16.
Williams
,
N.
,
Kannan
,
P. K.
, and
Azarm
,
S.
, 2011, “
Retail Channel Structure Impact on Strategic Engineering Product Design
,”
Manage. Sci.
,
57
(
5
), pp.
897
914
.
17.
Orhun
,
A. Y.
, 2009, “
Optimal Product Line Design When Consumers Exhibit Choice Set Dependent Preferences
,”
Mark. Sci.
,
28
(
5
), pp.
868
886
.
18.
Li
,
H.
, and
Azarm
,
S.
, 2002, “
An Approach for Product Line Design Selection Under Uncertainty and Competition
,”
J. Mech. Des.
,
124
(
3
), pp.
385
392
.
19.
Wassenaar
,
H. J.
, and
Chen
,
W.
, 2003, “
An Approach to Decision Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
490
497
.
20.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading
,”
J. Prod. Innovation Manage.
,
22
, pp.
42
62
.
21.
Besharati
,
B.
,
Luo
L.
,
Azarm
,
S.
, and
Kannan
,
P. K.
, 2006, “
Multi-Objective Single Product Robust Optimization: An Integrated Design and Marketing Approach
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
884
892
.
22.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
, 2006, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
J. Mech. Des.
,
128
(
6
), pp.
1196
1204
.
23.
Dolan
,
B.
, and
Lewis
,
K.
, 2008, “
Robust Product Family Consolidation and Selection
,”
J. Eng. Des.
,
19
(
6
), pp.
553
569
.
24.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2009, “
A Market-Driven Approach to Product Family Design
,”
Int. J. Prod. Res.
,
47
(
1
), pp.
71
104
.
25.
Luo
,
L.
, 2010, “
Product Line Design for Consumer Durables: An Integrated Marketing and Engineering Approach
,”
J. Mark. Res.
(to be published).
26.
Michalek
,
J. J.
,
Feinberg
,
F. M.
,
Ebbes
,
P.
,
Adigüzel
, and
Papalambros
,
P. Y.
, 2011, “
Enhancing Marketing With Engineering: Optimal Product Line Design for Heterogeneous Markets
,”
Int. J. Res. Mark.
,
28
, pp.
1
12
.
27.
Hsu
,
A.
, and
Wilcox
,
R. T.
, 2000, “
Stochastic Prediction in Multinomial Logit Models
,”
Manage. Sci.
,
46
(
8
), pp.
1137
1144
.
28.
Frischknecht
,
B.
,
Whitefoot
K.
, and
Papalambros
,
P. Y.
, 2010, “
On the Suitability of Econometric Demand Models in Design for Market Systems
,”
J. Mech. Des.
,
132
(
12
), pp.
57
68
.
29.
Raman
,
K.
, and
Chatterjee
,
R.
, 1995, “
Optimal Monopolist Pricing Under Demand Uncertainty in Dynamic Markets
,”
Manage. Sci.
,
41
(
1
), pp.
144
162
.
30.
Montgomery
,
A. L.
, and
Bradlow
,
E. T.
, 1999, “
Why Analyst Overconfidence About the Functional Form of Demand Models Can Lead to Overpricing
,”
Mark. Sci.
,
18
(
4
), pp.
569
583
.
31.
Abramson
,
C.
,
Andrews
,
R. L.
,
Currim
,
I. S.
, and
Jones
,
M.
, 2000, “
Parameter Bias From Unobserved Effects in the Multinomial Logit Model of Consumer Choice
,”
J. Mark. Res.
,
37
(
4
), pp.
410
426
.
32.
Louviere
,
J. J.
,
Street
,
D.
,
Carson
,
R.
,
Ainslie
,
A.
,
Deshazo
,
J. R.
,
Cameron
,
T.
,
Hensher
,
D.
,
Kohn
,
R.
, and
Marley
,
T.
, 2002, “
Dissecting the Random Component of Utility
,”
Mark. Lett.
,
13
(
3
), pp.
177
193
.
33.
Swait
,
J.
,
Adamowicz
,
W.
,
Hanemann
,
M.
,
Diederich
,
A.
,
Krosnick
,
J.
,
Layton
,
D.
,
Provencher
,
W.
,
Schkade
,
D.
, and
Tourangeau
,
R.
, 2002, “
Context Dependence and Aggregation in Disaggregate Choice Analysis
,”
Mark. Lett.
,
13
(
3
), pp.
195
205
.
34.
Louviere
,
J. J.
, 2001, “
What if Consumer Experiments Impact Variances as well as Means? Response Variability as a Behavioral Phenomenon
,”
J. Consum. Res.
,
28
(
3
), pp.
506
511
.
35.
Salisbury
,
L. C.
, and
Feinberg
,
F. M.
, 2010, “
Alleviating the Constant Stochastic Variance Assumption in Decision Research: Theory, Measurement, and Experimental Test
,”
Mark. Sci.
,
29
(
1
), pp.
1
17
.
36.
Luo
,
L.
,
Kannan
,
P. K.
,
Besharati
,
B.
, and
Azarm
,
S.
, 2005, “
Design of Robust New Products Under Variability: Marketing Meets Design
,”
J. Prod. Innovation Manage.
,
22
(
2
), pp.
177
192
.
37.
Kalyanam
,
K.
, 1996, “
Pricing Decisions Under Demand Uncertainty: A Bayesian Mixture Model Approach
,”
Mark. Sci.
,
15
(
3
), pp.
207
221
.
38.
Hitsch
,
G. J.
, 2006, “
An Empirical Model of Optimal Dynamic Product Launch and Exit Under Demand Uncertainty
,”
Mark. Sci.
,
25
(
1
), pp.
25
50
.
39.
Hazelrigg
,
G. A.
, 1998, “
A Framework for Decision-Based Engineering Design
,”
J. Mech. Des.
,
120
(
4
), pp.
653
658
.
40.
von Neumann
,
J.
, and
Morgenstern
,
O.
, 1953,
The Theory of Games and Economic Behavior
,
3rd ed.
,
Princeton University Press
,
Princeton, NJ
.
41.
Lewis
,
K.
,
Chen
,
W.
, and
Schmidt
,
L.
, 2006,
Decision Making in Engineering Design
,
American Society of Mechanical Engineers
,
New York, NY
.
42.
Wassenaar
,
H. J.
,
Chen
,
W.
, and
Cheng
,
J.
, 2005, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
J. Mech. Des.
,
127
(
4
), pp.
514
524
.
43.
Marston
,
M.
, and
Mistree
,
F.
, 1998, “
An Implementation of Expected Utility Theory in Decision Based Design
,” Proceedings of the ASME Design Theory and Methodology Conference,
Atlanta
,
Georgia
.
44.
McFadden
,
D.
, 1974,
Frontiers in Econometrics
,
Academic Press
,
New York, NY
, pp.
105
142
, Chap. 4.
45.
Hausman
,
J. A.
, and
Wise
,
D. A.
, 1978, “
A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences
,”
Econometrica
,
46
(
2
), pp.
403
426
.
46.
McFadden
,
D.
, and
Train
,
K.
, 2000, “
Mixed MNL Models of Discrete Response
,”
J. Appl. Econ.
,
15
(
5
), pp.
447
470
.
47.
Fiebig
,
D. G.
,
Keane
,
M. P.
,
Louviere
,
J.
, and
Wasi
,
N.
, 2009, “
The Generalized Multinomial Logit Model
,”
Mark. Sci.
,
29
(
3
), pp.
393
421
.
48.
Ofek
,
E.
, and
Srinivasan
,
V.
, 2002, “
How Much Does the Market Value an Improvement in a Product Attribute?
,”
Mark. Sci.
,
21
(
4
), pp.
398
411
.
49.
Bucklin
,
R. E.
,
Siddarth
,
S.
, and
Silva-Risso
,
J. M.
, 2008, “
Distribution Intensity and New Car Choice
,”
J. Mark. Res.
,
45
(
4
), pp.
473
486
.
50.
Train
,
K. E.
, 2009,
Discrete Choice Models With Simulation
,
Cambridge University Press
,
New York, NY
.
51.
Wooldridge
,
J. M.
, 2002,
Econometric Analysis of Cross Section and Panel Data, The
MIT Press
,
Cambridge, MA
.
52.
Erdem
,
T.
, and
Keane
,
M. P.
, 1996, “
Decision-making Under Uncertainty: Capturing Dynamic Choice Processes in Turbulent Consumer Goods Markets
,”
Mark. Sci.
,
15
(
1
), pp.
1
20
.
You do not currently have access to this content.