System modeling can help designers make and verify design decisions early in the design process if the model’s accuracy can be determined. The formula typically used to analytically propagate error is based on a first-order Taylor series expansion. Consequently, this formula can be wrong by one or more orders of magnitude for nonlinear systems. Clearly, adding higher-order terms increases the accuracy of the approximation but it also requires higher computational cost. This paper shows that truncation error can be reduced and accuracy increased without additional computational cost by applying a predictable correction factor to lower-order approximations. The efficiency of this method is demonstrated in the kinematic model of a flapping wing. While Taylor series error propagation is typically applicable only to closed-form equations, the procedure followed in this paper may be used with other types of models, provided that model outputs can be determined from model inputs, derivatives can be calculated, and truncation error is predictable.

References

References
1.
Murphy
,
B.
, 2009, “
Early Verification and Validation Using Model-Based Design
,”
EDN
,
54
, pp.
39
41
.
2.
Hamaker
,
H. C.
, 1995, “
Relative Merits of Using Maximum Error Versus 3(Sigma) in Describing the Performance of Laser-Exposure Reticle Writing Systems
,.
Proc. SPIE
,
2440
, p.
550
.
3.
Kiureghian
,
A. D.
, 1996, “
Structural Reliability Methods for Seismic Safety Assessment: A Review
,”
Eng. Struct.
,
18
(
6
), pp.
412
424
.
4.
Thanedar
,
P. B.
, and
Kodiyalam
,
S.
, 1992, “
Structural Optimization Using Probabilistic Constraints
,”
Struct. Multidiscip. Optim.
,
4
, pp.
236
240
.
5.
Melchers
,
R. E.
, 1999,
Structural Reliability: Analysis and Prediction
(Ellis Horwood Series in Civil Engineering),
John Wiley & Sons
,
New York
.
6.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
J. Mech. Des.
,
115
(
1
), p.
74
.
7.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
, 1999, “
Quality Utility—A Compromise Programming Approach to Robust Design
,”
J. Mech. Des.
,
121
, p.
179
.
8.
Chen
,
W.
,
Sahai
,
A.
,
Messac
,
A.
, and
Sundaraj
,
G. J.
, 2000, “
Exploring the Effectiveness of Physical Programming in Robust Design
,”
J. Mech. Des.
,
122
(
2
), pp.
155
163
.
9.
Su
,
J.
, and
Renaud
,
J. E.
, 1997, “
Automatic Differentiation in Robust Optimization
,”
AIAA J.
,
35
(
6
), pp.
1072
1079
.
10.
Taguchi
,
G.
, 1992,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
(ASME Press Series on International Advances in Design Productivity),
ASME Press
,
New York
.
11.
Messac
,
A.
, and
Ismail-Yahaya
,
A.
, 2002, “
Multiobjective Robust Design Using Physical Programming
,”
Struct. Multidiscip. Optim.
,
23
(
5
), pp.
357
371
.
12.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
, 2002, “
Error and Uncertainty in Modeling and Simulation
,”
Reliab. Eng. Syst. Safety
,
75
, pp.
333
357
.
13.
Halton
,
J. H.
, 1960, “
On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals
,”
Numer. Math.
,
2
, pp.
84
90
.
14.
Hammersley
,
J. M.
, 1960, “
Monte Carlo Methods for Solving Multivariate Problems
,”
Annals of the New York Academy of Sciences
,
86
, pp.
844
874
.
15.
Owen
,
A. B.
, 1998, “
Latin Supercube Sampling for Very High-Dimensional Simulations
,”
ACM Trans. Model. Comput. Simul.
,
8
(
1
), p.
71
.
16.
Hutcheson
,
R. S.
, and
McAdams
,
D. A.
, 2010, “
A Hybrid Sensitivity Analysis for Use in Early Design
,”
J. Mech. Des.
,
132
(
11
),
111007
.
17.
Lombardi
,
M.
, and
Haftka
,
R. T.
, 1998, “
Anti-optimization technique for structural design under load uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
19
31
.
18.
Chen
,
W.
,
Baghdasaryan
,
L.
,
Buranathiti
,
T.
, and
Cao
,
J.
, 2004, “
Model Validation via Uncertainty Propagation and Data Transformations
,”
AIAA J.
,
42
(
7
), pp.
1406
1415
.
19.
Koch
,
P. N.
, 2002, “
Probabilistic Design: Optimizing for Six Sigma Quality
,”
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Paper No. AIAA-2002-1471.
20.
Vardeman
,
S. B.
, 1994,
Statistics for Engineering Problem Solving
,
PWS Publishing Company
,
Boston, MA
.
21.
Mattson
,
C. A.
, and
Messac
,
A.
, 2002, “
A Non-Deterministic Approach to Concept Selection Using s-Pareto Frontiers
,”
Proceedings of ASME DETC
,
2
(
DETC2002/DAC-34125
), September, pp.
859
870
.
22.
Tellinghuisen
,
J.
, 2001, “
Statistical Error Propagation
,”
J. Phys. Chem. A
,
105
(
15
), pp.
3917
3921
.
23.
Lindberg
,
V.
, 2000, “
Uncertainties and Error Propagation—Part I of a Manual on Uncertainties, Graphing, and the Vernier Caliper
,” http://www.rit.edu/cos/uphysics/uncertainties/Uncertaintiespart2.htmlhttp://www.rit.edu/cos/uphysics/uncertainties/Uncertaintiespart2.html, accessed November 28, 2011.
24.
Zhang
,
J.
, 2006, “
The Calculating Formulae, and Experimental Methods in Error Propagation Analysis
,”
IEEE Trans. Reliab.
,
55
(
2
), pp.
169
181
.
25.
Goodman
,
L. A.
, 1960, “
On the Exact Variance of Products
,”
J. Am. Statist. Assoc.
,
55
(
292
), pp.
708
713
.
26.
Anderson
,
T. V.
, and
Mattson
,
C. A.
, 2012, “
Obtaining Non-Gaussian Output Error Distributions by Propagating Mean, Variance, Skewness, and Kthrough Closed-Form Analytical Models
,”
8th AIAA Multidisciplinary Design Optimization Specialist Conference Proceedings
, Under Review, AIAA.
27.
Julier
,
S.
,
Uhlmann
,
J.
, and
Durrant-Whyte
,
H. F.
, 2000, “
A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators
,”
IEEE Trans. Autom. Control
,
45
(
3
), pp.
477
482
.
28.
Putko
,
M. M.
III
,
A.
C. T.
,
Newman
,
P. A.
, and
Green
,
L. L.
, 2002, “
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
,”
J. Fluids Eng.
,
124
(
1
), pp.
60
69
.
29.
Hamel
,
J.
,
Li
,
M.
, and
Azarm
,
S.
, 2010, “
Design Improvement by Sensitivity Analysis Under Interval Uncertainty Using Multi-Objective Optimization
,”
J. Mech. Des.
,
132
(
8
),
081010
.
30.
Aono
,
H.
,
Shyy
,
W.
, and
Liu
,
H.
, 2009, “
Near Wake Vortex Dynamics of a Hovering Hawkmoth
,”
Acta Mech. Sin.
,
25
(
1
), pp.
23
36
.
31.
George
,
R. B.
, 2011, “
Design and Analysis of a Flapping Wing mechanism for Optimization
,” Master’s degree thesis, Brigham Young University, Provo, Utah.
You do not currently have access to this content.