A single-piece contact-aided compliant mechanism (CCM) deforms to use one or many contact interactions to deliver the prescribed intricate input–output functionality. We present an automated synthesis procedure to design CCMs to trace large, non-smooth paths. Such paths can be traced by rigid-body or partially compliant mechanisms as well but the complexity, bulkiness and the presence of hinges is a disadvantage in terms of increased friction, backlash, need for lubrication, noise, and vibrations. In designing CCMs, both curved frame and two-dimensional finite elements are employed to represent the continuum and simulate the formation of contact sites. A contact site is one that allows relative rotation/sliding of a deforming member with respect to the neighboring one it is in contact with. The proposed design algorithm uses commercial software for large displacement contact analysis. The overall procedure automatically determines the CCM topology, feature shapes and sizes, and therefore the number (e.g., single or multiple) and nature (e.g., stiction or sliding) of contact sites. It systematically favors the continuum designs with lower function values when the synthesis problem is posed using a minimization objective. Synthesis of CCMs is exemplified for path generation applications though the proposed method can be employed for any generic kinematic task.

References

References
1.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2002, “
Contact-Aided Compliant Mechanisms: Concept and Preliminaries
,”
Proceedings of the ASME DETC2002
, Paper # MECH- 34211.
2.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
Topology Synthesis of Contact-Aided-Compliant Mechanisms With Small Deformations
,”
Comput. Struct.
,
82
(
15–16
), pp.
1267
1290
.
3.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
4.
Hrones
,
J. A.
, and
Nelson
,
G. L.
, 1951,
Analysis of the Four-Bar Linkage
,
Technology Press of MIT and John Wiley and Sons
,
New York
.
5.
Kempe
,
A. B.
, 1876, “
On a General Method of Describing Planar Curves of the nth Degree by Linkwork
,”
Proc. R. Soc. London
,
7
, pp.
213
216
.
6.
Gao
,
X. S.
,
Zhu
,
C. C.
,
Chou
,
S. C.
, and
Ge
,
J. X.
, 2001, “
Automated Generation of Kempe Linkages for Algebraic Curves and Surfaces
,”
Mech. Mach. Theory
,
36
, pp.
1019
1033
.
7.
Artobolevskii
,
I. I.
, 1964,
Mechanisms for the Generation of Plane Curves
,
Pergamon, New York
.
8.
Winter
,
S. J.
, and
Shoup
,
T. E.
, 1973, “
The Displacement Analysis of Path-Generating Flexible-Link Mechanisms
,”
Mech. Mach. Theory
,
7
, pp.
443
451
.
9.
Sriram
,
B. R.
, and
Mruthyunjaya
,
T. S.
, 1995, “
Synthesis of Path Generating Flexible-Link Mechanisms
,”
Comput. Struct.
,
56
(
4
), pp.
657
666
.
10.
Ramrakhyani
,
D. S.
,
Frecker
,
M. I.
and
Lesiutre
,
G. A.
, 2006, “
Hinged Beam Elements for the Topology Design of Compliant Mechanisms Using the Ground Structure Approach
,”
Proceedings of ASME Design Engineering Technical Conferences
, DETC2006-99439.
11.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimality Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
, pp.
36
49
.
12.
Larsen
,
V. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1996, “
Design and Fabrication of Compliant Mechanisms and Structures With Negative Poisson’s Ratio
,”
Workshop on Micro Electro Mechanical Systems
, MEMS-96,
IEEE
,
New York
.
13.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Nonlinear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.
14.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Output Path
,”
ASME J. Mech. Des.
,
123
, pp.
33
42
.
15.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
2
), pp.
2683
2705
.
16.
Ullah
,
I.
, and
Kota
,
S.
, 1997, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
, pp.
504
510
.
17.
Mankame
,
N.
, and
Ananthasuresh
,
G. K.
, 2007, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2564
2605
.
18.
Bendsøe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape and Material
,
Springer
,
Berlin
.
19.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometrical, and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
, pp.
309
336
.
20.
Borrvall
,
T.
, and
Petersson
,
J.
, 2001, “
Topology Optimization Using Regularized Intermediate Density Control
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
4911
4928
.
21.
Goldberg
,
D. E.
, 2002,
Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley Longman, Inc., Reading
, MA.
22.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
, pp.
1005
1012
.
23.
Kane
,
C.
, and
Schoenauer
,
M.
, 1996, “
Topological Optimum Design Using Genetic Algorithms
,”
Contr. Cybernet.
,
25
(
5
), pp.
1059
1088
.
24.
Jakiela
,
M. J.
,
Chapman
,
C.
,
Duda
,
J.
,
Adewuya
,
A.
, and
Saitou
,
K.
, 2000, “
Continuum Structural Topology Design With Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
186
, pp.
339
356
.
25.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
492
500
.
26.
Parsons
,
R.
, and
Canfield
,
S. L.
, 2002, “
Developing Genetic Programming Techniques for the Design of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
,
24
, pp.
78
86
.
27.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
,
127
, pp.
1
8
.
28.
Saxena
,
A.
, 2005, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscip. Optim.
,
30
(
6
), pp.
477
490
.
29.
Zhou
,
H.
, and
Ting
,
K. L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
753
759
.
30.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
, 2007, “
Synthesis of Path Generating Compliant Mechanisms using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
,
129
, pp.
1056
1063
.
31.
Mettlach
,
G. A.
, 1996, “Analysis and Design of Compliant Mechanisms Using Analytical and Graphical Techniques,” Ph.D. thesis, Purdue University, West Lafayette, IN.
32.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
, 2010, “
Unified Synthesis of Compact Planar Path-Generating Linkages With Rigid and Deformable Members
,”
Struct. Multidiscip. Optim.
,
41
, pp.
863
879
.
33.
Wriggers
,
P.
, 2006,
Computational Contact Mechanics
,
2nd ed.
,
Springer
,
New York
.
34.
abaqus, 2009, “abaqus User’s Manual Ver. 6.9,” Daussault Systems Inc.
35.
Hull
,
P. V.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
,
128
, pp.
337
348
.
36.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G. A.
, 2009, “
Stress Relief in Contact-Aided Compliant Cellular Mechanisms
,”
ASME J. Mech. Des.
,
131(9)
,
091009
.
You do not currently have access to this content.