Quality characteristics are often treated as constants in robust design, while many of them actually vary over time. It is desirable to define new robustness metrics for time-dependent quality characteristics. This work shows that using the static robustness metrics for time-dependent quality characteristics may lead to erroneous design results. We then propose criteria of new robustness metrics for time-dependent quality characteristics. Instead of using an expected point quality loss over the time period of interest, we use the expectation of the maximal quality loss over the time period to quantify the robustness for time-dependent quality characteristics. Through a four-bar function generator mechanism synthesis, we demonstrate that the new robustness metrics can capture the full information of robustness of a time-dependent quality characteristic over a time interval. The new robustness metrics can then be used as objective functions for time-dependent robust design optimization.

References

References
1.
Phadke
,
M. S.
, 1995,
Quality Engineering Using Robust Design
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
2.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K. L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
3.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H. J.
, and
Mistree
,
F.
, 2006, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.
4.
Murphy
,
T. E.
,
Tsui
,
K. L.
, and
Allen
,
J. K.
, 2005, “
A Review of Robust Design Methods for Multiple Responses
,”
Res. Eng. Des.
,
16
(
3
), pp.
118
132
.
5.
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1997, “
A Robust Concept Exploration Method for Enhancing Productivity in Concurrent Systems Design
,”
Concurr. Eng. Res. Appl.
,
5
(
3
), pp.
203
217
.
6.
Huang
,
B.
, and
Du
,
X.
, 2007, “
Analytical Robustness Assessment for Robust Design
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
123
137
.
7.
Beyer
,
H. G.
, and
Sendhoff
,
B.
, 2007, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
8.
Zang
,
C.
,
Friswell
,
M. I.
, and
Mottershead
,
J. E.
, 2005, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4–5
), pp.
315
326
.
9.
Park
,
G. J.
,
Lee
,
T. H.
,
Lee
,
K. H.
, and
Hwang
,
K. H.
, 2006, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
10.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.
11.
Pignatiello
,
J. J.
, 1993, “
Strategies for Robust Multiresponse Quality Engineering
,”
IIE Trans.
,
25
(
3
), pp.
5
15
.
12.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
, 2006, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
13.
Mcallister
,
C. D.
,
Simpson
,
T. W.
,
Lewis
,
K.
, and
Messac
,
A.
, 2004, “
Robust Multiobjective Optimization Through Collaborative Optimization and Linear Physical Programming
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, 30 Aug.–1 Sep.,
Albany
,
New York
, pp.
2745
2760
, AIAA Paper No. 2004-4549.
14.
Messac
,
A.
, and
Ismail-Yahaya
,
A.
, 2002, “
Multiobjective Robust Design Using Physical Programming
,”
Struct. Multidiscip. Optim.
,
23
(
5
), pp.
357
371
.
15.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
562
570
.
16.
Gu
,
X.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Brach
,
R. M.
, and
Budhiraja
,
A. S.
, 2000, “
Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Design Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
3
), pp.
190
213
.
17.
Tsui
,
K. L.
, 1999, “
Modeling and Analysis of Dynamic Robust Design Experiments
,”
IIE Trans.
,
31
(
12
), pp.
1113
1122
.
18.
Wu
,
F. C.
, 2009, “
Robust Design of Nonlinear Multiple Dynamic Quality Characteristics
,”
Comput. Ind. Eng.
,
56
(
4
), pp.
1328
1332
.
19.
Lee
,
I.
,
Choi
,
K. K.
, and
Du
,
L.
, 2006, “
Alternative Methods for Reliability-Based Robust Design Optimization Including Dimension Reduction Method
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, DETC2006-99732, Sept. 10–13,
Philadelphia, Pennsylvania
, pp.
1235
1246
.
20.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
, 2009, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.
21.
Goethals
,
P. L.
, and
Cho
,
B. R.
, 2011, “
The Development of a Robust Design Methodology for Time-Oriented Dynamic Quality Characteristics With a Target Profile
,”
Qual. Reliab. Eng. Int.
,
27
(
4
), pp.
403
414
.
22.
Sudret
,
B.
, 2008, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.
23.
Li
,
J.
, and
Mourelatos
,
Z. P.
, 2009, “
Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm
,”
ASME J. Mech. Des.
,
131
(
7
),
0710091
.
24.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
, 2004, “
The Phi2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.
25.
Li
,
C.-C.
, and
Der Kiureghian
,
A.
, 1993, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.
26.
Zhang
,
J.
, and
Du
,
X.
, 2010, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
),
101006
.
You do not currently have access to this content.