In this paper, an Insulated Gate Bipolar Transistor (IGBT) module designed for aeronautic applications is investigated using structural reliability methods coupled with Finite Elements (FE) modeling. The lifetime of the module with respect to its solder joints failure, is evaluated using its thermomechanical response, in association with a low cycle fatigue model. The simulation of an aeronautic typical Accelerated Thermal Cycling (ATC) test configuration allows checking in a first step, the relevancy of the numerical procedure by assessing the experimental lifetime of the connections, and comparing them to experimental results. Then, the structural reliability of the module is evaluated over the target aircraft predicted useful lifetime, comparing the First Order Reliability Method (FORM) and Monte-Carlo Simulation (M-CS). The appropriate temperature mission profile and flight time are therefore considered with their scatters, in addition to those of the parameters of the fatigue model. Regarding these latter parameters, a simulation based approach is proposed and applied for the determination of their probability density function (pdf). For reasonable reliability analysis time, the thermomechanical response of the module was surrogated using Kriging metamodels. The paper ends with the exploitation of the reliability importance factors for identifying and proposing improvements, with the demonstration of considerable reliability increase.

References

References
1.
Jones
,
R. I.
, 1999, “
The more electric aircraft: the past and the future?
”,
In IEEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft
,
Cranfield University
, pp.
1
4
.
2.
Quigley
,
R. E. J.
, 1993, “
More Electric Aircraft
,”
Proceedings of the IEEE Applied Power Electronics Conference
, San Diego (CA), APEC, pp.
906
911
.
3.
Weimer
,
J. A.
, 2003, “
The Role of Electric Machines and Drives in the More Electric Aircraft
,”
Proceedings of the IEEE International Electric Machines and Drives Conference
, Vol.
1
, pp.
11
15
.
4.
Lhommeau
,
T.
,
Meuret
,
R.
, and
Karama
,
M.
, 2005, “
Technological study of an IGBT module for an aeronautical application in zone engine
,”
In 11th European Conference on Power Electronics and Applications
(EPE 2005, Dresden).
5.
Zéanh
,
A.
,
Dalverny
,
O.
,
Karama
,
M.
,
Woirgard
,
E.
,
Azzopardi
,
S.
,
Bouzourene
,
A.
,
Casutt
,
J.
, and
Mermet-Guyennet
,
M.
, 2008, “
Reliability of the Connections Used in IGBT Modules, in Aeronautical Environment
,”
Int. J. Simul. Multidiscip. Des. Optim.
,
2
(
2
), pp.
123
133
.
6.
Ciappa
,
M.
, 2002, “
Selected Failure Mechanisms of Modern Power Modules
,”
Microelectron. Reliab.
,
42
(
4–5
), pp.
653
667
.
7.
Tang
,
J.
, 2001, “
Mechanical System Reliability Analysis Using a Combination of Graph Theory and Boolean Function
,”
Reliab. Eng. Syst. Saf.
,
72
, pp.
21
30
.
8.
Sun
,
Y.
,
Ma
,
L.
,
Mathew
,
J.
, and
Zhang
,
S.
, 2006, “
An Analytical Model for Interactive Failures
,”
Reliab. Eng. Syst. Saf.
,
91
(
5
), pp.
495
504
.
9.
Saleh
,
J. H.
, and
Marais
,
K.
, 2006, “
Highlights From the Early (and Pre-) History of Reliability Engineering
,”
Reliab. Eng. Syst. Saf.
,
91
(
2
), pp.
249
256
. Selected Papers Presented at QUALITA 2003.
10.
Zio
,
E.
, 2009, “
Reliability Engineering: Old Problems and New challenges
,”
Reliab. Eng. Syst. Saf.
,
94
(
2
), pp.
125
141
.
11.
Procaccia
,
H.
, and
Piepszownik
,
L.
, 1992,
Fiabilité des équipements et théorie de la décision statistique fréquentielle et bayésienne
,
Eyrolles, EDF
,
Paris
.
12.
Procaccia
,
H.
, and
Suhner
,
M.-C.
, 2003,
Démarche bayésienne et applications à la sureté de fonctionnement
,
Hermes – Lavoisier
,
Paris
.
13.
United States Department of the Army, 1991, MIL-HDBK-217F: Military Handbook, Reliability prediction of electronic equipment, Dec.
14.
Fragola
,
J. R.
, 1996, “
Reliability and Risk Analysis Data Base Development: An Historical Perspective
,”
Reliab. Eng. Syst. Saf.
,
51
(
2
), pp.
125
136
.
15.
Bedford
,
T.
, and
Cooke
,
R.
, 2002, “
Reliability Databases in Perspective
,”
IEEE Trans. Reliab.
,
51
(
3
), pp.
294
310
.
16.
Lewis
,
E. E.
, 1987,
Introduction to Reliability Engineering
,
John Wiley & Sons
,
New York
.
17.
White
,
M.
, and
Bernstein
,
J. B.
, 2008,
Microelectronics reliability: Physics-of-failure based modeling and lifetime evaluation
, Tech. rep., NASA, Feb. JPL Publication 08-5.
18.
Madsen
,
H.
,
Krenk
,
S.
, and
Lind
,
N.
, 1986,
Method of Structural Safety
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Ditlevsen
,
O.
, and
Madsen
,
H.
, 1996,
Structural Reliability Methods
,
Wiley
,
New York
.
20.
Rackwitz
,
R.
, 2001, “
Reliability Analysis–A Review and Some Perspectives
,”
Struct. Saf.
,
23
(
4
), pp.
365
395
.
21.
Lemaire
,
M.
, 2005,
Fiabilité des structures: couplage mécano-fiabiliste statique
,
Hermès-Lavoisier
,
Paris
.
22.
Hall
,
P.
, and
Strutt
,
J.
, 2003, “
Probabilistic Physics-of-Failure Models for Component Reliabilities Using Monte Carlo Simulation and Weibull analysis: A Parametric Study
,”
Reliab. Eng. Syst. Saf.
,
80
, pp.
233
242
.
23.
Liu
,
P.-L.
, and
Der Kiureghian
,
A.
, 1986, “
Multivariate Distribution Models With Prescribed Marginals and Covariances
,”
Probab. Eng. Mech.
,
1
(
2
), pp.
105
112
.
24.
Hasofer
,
A.
, and
Lind
,
N.
, 1974, “
Exact and Invariant Second Moment Code Format
,”
J. Engrg. Mech. Div.
,
100
, pp.
111
121
.
25.
Kharmanda
,
G.
,
Mohamed
,
A.
, and
Lemaire
,
M.
, 2002, “
Efficient Reliability-Based Design Optimization Using a Hybrid Space With Application to Finite Element Analysis
,”
Struct. Multidiscip. Optim.
,
24
, pp.
233
245
.
26.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
, pp.
221
232
.
27.
Adams
,
B. M.
,
Eldred
,
M. S.
, and
Wittwer
,
J. W.
, 2006, “
Reliability-Based Design Optimization for Shape Design of Compliant Micro-Electro-Mechanical Systems
,”
In 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
.
28.
Zhao
,
Y.-G.
, and
Ono
,
T.
, 1998, “
System Reliability Evaluation of Ductile Frame Structures
,”
J. Struct. Eng.
,
124
(
6
), pp.
678
685
.
29.
Melchers
,
R. E.
, and
Ahammed
,
M.
, 2001, “
Estimation of Failure Probabilities of Intersections of Non-Linear Limit States
,”
Struct. Saf.
,
23
(
2
), pp.
123
135
.
30.
Neves
,
R. A.
,
Mohamed-Chateauneuf
,
A.
, and
Venturini
,
W. S.
, 2008, “
Component and System Reliability Analysis of Nonlinear Reinforced Concrete Grids With Multiple Failure Modes
,”
Struct. Saf.
,
30
, pp.
183
199
.
31.
Birnbaum
,
Z. W.
, 1969, “
Multivariate Analysis-II
,”
On the Importance of different Components in a Multicomponent System
,”
Academic
,
New York
, pp.
581
592
.
32.
Pan
,
Z.-J.
, and
Tai
,
Y.-C.
, 1988, “
Variance importance of system components by monte carlo
,”
IEEE Trans. Reliab.
,
37
, pp.
421
423
.
33.
Meng
,
F. C.
, 1996, “
Comparing the Importance of System Components by Some Structural Characteristics
,”
IEEE Trans. Reliab.
,
45
(
1
), pp.
59
65
.
34.
Wang
,
W.
,
Loman
,
J.
, and
Vassiliou
,
P.
, 2004, “
Reliability Importance of Components in a Complex System
,”
Reliability and Maintainability, 2004 Annual Symposium - RAMS
, pp.
6
11
.
35.
Mermet-Guyennet
,
M.
, 2006, “
New Structure of Power Integrated Module
,”
Proceedings of the CIPS
.
36.
Dupont
,
L.
, 2006, “
Contribution à l’étude de la durée de vie des assemblages de puissance dans des environnements haute température et avec des cycles thermiques de grande amplitude
,” Ph.D thesis, ENS Cachan, France.
37.
Micol
,
A.
,
Zéanh
,
A.
,
Lhommeau
,
T.
,
Azzopardi
,
S.
,
Woirgard
,
E.
,
Dalverny
,
O.
, and
Karama
,
M.
, 2009, “
An Investigation Into the Reliability of Power Modules Considering Baseplate Solders Thermal Fatigue in Aeronautical Applications
,”
Microelectron. Reliab.
,
49
(
9–11
), pp.
1370
1374
.
Proceedings of the 20th European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis (ESREF)
, October 2009, 5th–9th, Arcachon - France.
38.
Heinrich
,
S. M.
, 1994,
The Mechanics of Solder Alloy - Interconnects
.
Van Nostrand Rheinhold
,
New York
, ch. 5: Prediction of Solder Joint Geometry, pp.
158
198
.
39.
Bevan
,
M.
, and
Wuttig
,
M.
, 1997, “
Complex Fatigue of Soldered Joints - Comparison of Fatigue Models
,”
Electronic Components and Technology Conference
, pp.
127
133
.
40.
Dassault Systmes Simulia Corp.
, 2009,
ABAQUS Documentation, Version 6.9
.
Providence
,
Rhode Island
.
41.
Ashby
,
M. F.
, 2005,
Materials Selection in Mechanical Design
,
Butterworth-Heinemann
,
Oxford
.
42.
Lemaître
,
J.
, and
Chaboche
,
J.-L.
, 1985,
Mécanique des Matériaux Solides
,
Dunod
,
Paris
.
43.
Wang
,
G. Z.
,
Cheng
,
Z. N.
,
Beker
,
K.
, and
Wilde
,
J.
, 2001, “
Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys
,”
J. Electron. Packag.
,
123
, pp.
247
253
.
44.
Zéanh
,
A.
, 2009, “
Contribution à l’amélioration de la fiabilité des modules IGBT utilisés en environnement aéronautique
,” Ph.D thesis, Université de Toulouse.
45.
ITRI, 1999, Mechanical properties of solders and solder joints. Tech. rep., International Tin Research Institute. Publication No. 656.
46.
Wilde
,
J.
,
Becker
,
K.
,
Thoben
,
M.
,
Blum
,
W.
,
Jupitz
,
T.
,
Wang
,
G.
, and
Cheng
,
Z. N.
, 2000, “
Rate Dependent constitutive relations based on Anand model for 92.5Pb5Sn2.5Ag Solder
,”
IEEE Trans. Adv. Packag.
,
23
, pp.
408
414
.
47.
United States Department of the Army, 2004. MIL-STD-883F: Test Method Standard Microcircuits, June.
48.
PhiMeca, EADS & EDF, 2010, OpenTURNS version 0.13.2 - Reference Guide.
49.
Faravelli
,
L.
, 1989, “
Response-Surface Approach for Reliability Analysis
,”
J. Eng. Mech.
,
115
(
12
), pp.
2763
2781
.
50.
Bucher
,
C. G.
, and
Bourgund
,
U.
, 1990, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Saf.
,
7
(
1
), pp.
57
66
.
51.
Rajashekhar
,
M. R.
, and
Ellingwood
,
B. R.
, 1993, “
A New Look at the Response Surface Approach for Reliability Analysis
,”
Struct. Saf.
,
12
(
3
), pp.
205
220
.
52.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
, 2001, “
Neural Network-Based Reliability Analysis: A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
113
132
.
53.
Kaymaz
,
I.
, 2005, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,,
27
(
2
), pp.
133
151
.
54.
Kleijnen
,
J. P.
, 2007, “
Kriging Metamodeling in Simulation: A Review
,”
Eur. J. Oper. Res.
,
192
, pp.
707
716
.
55.
Li
,
H.-S.
,
L
,
Z.-Z.
, and
Yue
,
Z.-F.
, 2006, “
Support Vector Machine for Structural Reliability Analysis
,”
Appl. Math. Mech.
,
27
(
10
), pp.
1295
1303
.
56.
van Rossum
,
G.
, 2003,
The Python Language Reference Manual
,
Fred L.
Drake
, Jr.
, ed.,
The Network Theory Ltd.
,
United Kingdom
.
57.
Cressie
,
N. A. C.
, 1993,
Statistics for Spatial Data
,
Wiley
,
New York
.
58.
Baillargeon
,
S.
, 2005, “
Le krigeage: revue de la théorie et application à l’interpolation spatiale de données de précipitations
,” Master’s thesis, Faculté des sciences et de génie de l’université Laval, Québec.
59.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
, 2010. “
Kriging based Monte Carlo simulation to compute the probability of failure efficiently: AK-MCS method
”. In 6ème Journées Fiabilité des Matériaux et des Structures et des Structures (JFMS’ 10).
60.
Popelar
,
S. F.
, 1998, “
A Parametric Study of Flip Chip Reliability Based on Solder Fatigue Modelling: Part II - Flip Chip on Organic
,”
31st International Symposium on Microelectronics
, pp.
497
504
.
61.
Towashiraporn
,
P.
,
Subbarayan
,
G.
,
McIlvanie
,
B.
,
Hunter
,
B.
,
Love
,
D.
, and
Sullivan
,
R.
, 2001, “
Predictive Reliability Models Through Validated Correlation Between Power Cycling and Thermal Cycling Accelerated Life Tests
,”
Conference on Advances in Packaging (APACK)
. ISBN No: 981-04-4638-1.
62.
Darveaux
,
R.
, 2002, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction
,”
J. Electron. Packag.
,
124
, pp.
147
154
.
63.
Wu
,
W.-F.
,
Lin
,
Y.-Y.
, and
Young
,
H.-T.
, 2005, “
Quantitative Reliability Analysis of Electronic Packages in Consideration of Variability of Model Parameters
,”
Proceedings of the 7th Electronic packaging technology conference EPTC
, Vol.
2
.
64.
Guédon-Gracia
,
A.
, 2006, “
Contribution à la conception thermo-mécanique optimisée d’assemblages sans plomb
,” Ph. D. thesis, Université Bordeaux 1 - France.
65.
Zhang
,
Q.
,
Dasgupta
,
A.
, and
Haswell
,
P.
, 2005, “
Isothermal Mechanical Durability of Three Selected PB-Free Solders – Sn3.9Ag0.6Cu, Sn3.5Ag, and Sn0.7Cu
,”
J. Electron. Packag.
,
127
, pp.
512
522
.
66.
RTCA, 1997. DO-160D: Environmental condition and test procedures for airborne equipment.
You do not currently have access to this content.